Лазерный оптико-акустический метод локального измерения упругих модулей композиционных материалов, упрочненных частицами

Автор: Карабутов А.А., Кобелева Л.И., Подымова Н.Б., Чернышова Т.А.

Журнал: Техническая акустика @ejta

Статья в выпуске: т.8, 2008 года.

Бесплатный доступ

Предложен и экспериментально реализован лазерный оптико-акустический метод локального измерения упругих модулей изотропных композиционных материалов. Метод основан на измерении фазовых скоростей продольных и сдвиговых акустических волн в образцах в спектральном диапазоне 0,2…50 МГц. Получение широкополосных акустических импульсов происходит за счет лазерного термооптического механизма возбуждения ультразвука. Толщина исследуемых образцов может составлять 0,1…70 мм, поперечные размеры - от 10 мм. Локальность измерений в поперечном направлении составляет 1…2 мм, максимальная относительная погрешность определения модуля Юнга - 6%, модуля сдвига - 4%, коэффициента Пуассона - 5%. Измерены локальные значения упругих модулей композиционных материалов на основе алюминиевых сплавов АК12М2МгН и АК12, упрочненных частицами SiC со средним диаметром 14 мкм и 28 мкм, а также наночастицами Al2O3. Разработанный лазерный ультразвуковой метод дает возможность проводить экспериментальный анализ влияния химического состава матрицы, а также состава, размеров и концентрации упрочняющих частиц на упругие свойства композиционных материалов.

Еще

Лазерный оптико-акустический метод, продольные и сдвиговые акустические волны, фазовая скорость, упругие модули композиционных материалов

Короткий адрес: https://sciup.org/14316101

IDR: 14316101

Список литературы Лазерный оптико-акустический метод локального измерения упругих модулей композиционных материалов, упрочненных частицами

  • Крюков И. И., Агузумцян В. Г. Ультразвуковой теневой дефектоскоп для контроля структурно-неоднородных материалов. Заводская лаборатория, № 1, с. 28-31, 1998.
  • Баранов В. М., Карасевич В. А., Сарычев Г. А. Усталостные испытания материалов в экстремальных условиях с применением акустического метода. Заводская лаборатория, № 9, с. 55-59, 2003.
  • Fitting D. W., Adler L. Ultrasonic spectral analysis for nondestructive evaluation. New York, Plenum Press, 1981.
  • Труэлл Р., Эльбаум Ч., Чик Б. Ультразвуковые методы в физике твердого тела. Москва, Мир, 1972.
  • Nicoletti D., Anderson A. Determination of grain size distribution from ultrasonic attenuation. Transformation and inversion. J. Acoust. Soc. Am., v. 101, № 3, p. 686-689, 1997.
  • Zang X.-G., Simpson W. A., Vitek J. M., et. al. Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum. J. Acoust. Soc. Am., v. 116, № 1, p. 109-116, 2004.
  • Layman C., Murthy N. S., Yang R.-B., et. al. The interaction of ultrasound with particulate composites. J. Acoust. Soc. Am., v. 119, № 3, p. 1449-1456, 2006.
  • Дятлова Е. Н., Кольцова И. С., Майсун М. Экспериментальное исследование скорости ультразвуковых волн в дисперсных средах. Акустич. журн., т. 48, № 1, с. 52-59, 2002.
  • Кольцова И. С., Зиновьева Е. Н., Михалев А. Ю. Скорость ультразвуковых волн в феррокомпозитах. Акустич. журн., т. 51, № 5, с. 658-662, 2005.
  • Алымов В.Т., Буров А.Е., Кокшаров И.И., Москвичев В.В. Применение методов неразрушающего контроля для обнаружения макроскопических дефектов в волокнистом композиционном материале. Заводская лаборатория, № 10, с. 26-29, 2001.
  • Велев Г. Ст., Латковски В. В. Метод исследования материалов ультразвуком. Электронный журнал «Техническая акустика», http://ejta.org, 2003, 11.
  • Карабутов А. А., Керштейн И. М., Пеливанов И. М., Подымова Н. Б. Исследование упругих свойств однонаправленных графитоэпоксидных композитов лазерным ультразвуковым методом. Механика композитных материалов, т. 34, № 6, с. 811-822, 1998.
  • Карабутов А. А., Керштейн И. М., Пеливанов И. М., Подымова Н. Б. Распространение продольных и сдвиговых акустических видеоимпульсов в графито-эпоксидных композитах. Акустич. журн., т. 45, № 1, с. 86-91, 1999.
  • Pritz T. Measurement methods of complex Poisson's ratio of viscoelastic materials. Appl. Acoustics, v. 60, № 3, p. 279-292. 2000.
  • Plesek J., Kolman R., Landa M. Using finite element method for the determination of elastic moduli by resonant ultrasound spectroscopy. J. Acoust. Soc. Am., v. 116, № 1, p. 282-287, 2004.
  • Norris A. N. Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J. Acoust. Soc. Am., v. 119, № 4, p. 2114-2121, 2006.
  • Меркулов Л. Г. Исследование рассеяния ультразвука в металлах. ЖТФ, т. 26, № 1, c. 64-75, 1956.
  • Beecham D. Ultrasonic scatter in metals: its properties and its application to grain size determination. Ultrasonics, v. 4, № 1, p. 67-76, 1966.
  • Stanke F. E., Kino G. S. A unified theory for elastic wave propagation in polycrystalline materials. J. Acoust. Soc. Am., v. 75, № 3, p. 665-681, 1984.
  • Гусев В. Э., Карабутов А. А. Лазерная оптоакустика. Москва, Наука, 1991.
  • Aindow A. M., Dewhurst R. J., Hutchins D. A., Palmer S. B. Laser-generated ultrasonic pulses at free metal surfaces. J. Acoust. Soc. Am., v. 69, № 2, p. 449-455, 1981.
  • Bescond C., Audoin B., Deschamps M., Qian M. Measurement by laser generated ultrasound of the stiffness tensor of an anisotropic material. Acta Acustica, v. 88, № 1, p. 50-59, 2002.
  • Arias I., Achenbach J. D. Thermoelastic generation of ultrasound by line-focused laser irradiation. Int. J. of Solids and Structures, v. 40, p. 6917-6935, 2003.
  • Hurley D. H. Laser-generated thermoelastic acoustic sources in anisotropic materials. J. Acoust. Soc. Am., v. 115, № 5, p. 2054-2058, 2004.
  • Zhang F., Krishnaswamy S., Lilley C. M. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films. Ultrasonics, v. 45, № 1-4, p. 66-76, 2006.
  • Чернышова Т. А., Курганова Ю. А., Кобелева Л. И., Болотова Л. К., и др. Композиционные материалы с матрицей из алюминиевых сплавов, упрочненных частицами, для пар трения скольжения. Конструкции из композиционных материалов, вып. 3, с. 38-48, 2007.
  • Sachse W., Kim K. Y. Quantitative acoustic emission and failure mechanics of composite materials. Ultrasonics, v. 25, № 7, p. 195-203, 1987.
  • Физические величины. Справочник. (ред. Григорьев И. С., Мейлихов Е. З.). Москва, Энергоатомиздат, 1991.
  • Жаркий С. М., Карабутов А. А., Пеливанов И. М., Подымова Н. Б., и др. Исследование слоев пористого кремния лазерным ультразвуковым методом. Физика и техника полупроводников, т. 32, № 10, с. 485-489, 2003.
  • Белов М. А., Карабутов А. А., Пеливанов И. М., Подымова Н. Б. Диагностика пористости графитоэпоксидных композитов лазерным ультразвуковым методом. Контроль. Диагностика, № 2, с. 48-54, 2003.
  • Поляков В. В., Головин В. А. Влияние пористости на скорость ультразвуковых волн в металлах. Письма в ЖТФ, т. 20, № 11, с. 54-57, 1994.
Еще
Статья научная