Lie differential geometry Aufbau of the atoms and molecules

Бесплатный доступ

In previous PIRT conferences I have reported on a differential geometry structural make-up of the standard model of the elementary particles and the periodic system of the atoms following Marius Sophus Lie’s Ph.D. dissertation Over en Classe Geometriske Transformationer at Christiana (now Oslo) University in 1871. This thesis essentially describes Nature at the infinitesimal level it appears as by “a transition from a point to a straight line as element” both mathematically and materially of a coherent differential constitution. Under nucleosynthetic conditions its partial derivative square wave steps “of length equal to zero” goes into a space- filling modular “curve-net” formation. In the first generation, from the 10-15 meter size of the Nucleon radius, this is a bi-layer wave-packet accumulation of palindromic Bohr Aufbau configuration, whose repeated application like in an oriental tiling or carpet first outlines its pattern in the periodic table over the more than 10,000 times larger extension of the atom cross-section area. When an integral surface layer is covered by a full excursion of the knot returning to the origin, the train continues by moving upward the Nucleon shaft to a new facet of the crystal which retains the shape of its infinitesimal module and so can self-assemble into a polymeric nanostructure cluster of itself or molecular combinations with other atoms exactly and extensively as specified in established chemical formulas. This is here exemplified by some basic and more advanced organic compounds including the proteinogenic amino acids and DNA.

Еще

Atoms, aufbau, differential geometry, lie algebra, molecules, periodic system

Короткий адрес: https://sciup.org/142240759

IDR: 142240759   |   DOI: 10.17238/issn2226-8812.2023.3-4.299-313

Список литературы Lie differential geometry Aufbau of the atoms and molecules

  • Lie, M.S. Over en Classe geometriske Transformationer. Ph.D. Thesis, Kristiania (now Oslo,) University, 12 06 1871.
  • Trell, E. English translation of Marius Sophus Lie’s doctoral thesis Over en Classe geometriske Transformationer. Algebras, Groups and Geometries 1998, 15, 396-445 and hadronicpress.com/lie.pdf, internet open accessible.
  • Pluecker, J. Neue Geometrie des Raumes gegr?ndet auf die Betrachtung der geraden Linie als Raum Element; Druck und Verlag von B. G. Teubner, Leipzig, 1868.
  • Bobenko, A.I., Schief, W.K. Discrete line complexes and integrable evolution of minors. arXiv 2015, 1410.5794v2, 1-30.
  • Trell, E. Representation of particle masses in hadronic SU(3) transformation diagram. Acta Phys. Austriaca 1983, 55, 97-110.
  • Trell, E. On rotational symmetry and real geometrical representations of the elementary particles with special reference to the N and D series. Phys. Essays 1991, 4, 272-283.
  • Trell, E. Real forms of the elementary particles with a report of the S resonances. Phys. Essays 1992, 5, 362-373.
  • Trell, E. Elementary particle spectroscopy in regular solid rewrite. AIP Conference Proceedings 2008, 1051, 127-141.
  • Trell, E. Digital outline of the elementary particles via a root space diagram approach, J. Comput. Meth. Sci. Eng. 2013, 13, 245-270.
  • Trell, E. Lie, Santilli, and nanotechnology. AIP Conference Proceedings 2014, 1637, 1100-1109.
  • Trell, E.; Akpojotor, G.; Edeagu, S.; Animalu, A. Structural wave-packet tessellation of the periodic table and atomic constitution in real R3 x SO(3) configuration space. J. Phys.: Conf. Ser. 2019, 1251 012047, 1-15.
  • Trell, E. A space-frame periodic table representation system testing relativity in nucleosynthesis of the elements. J. Phys.: Conf. Ser. 2020, 1557 012006, 1-10.
  • Trell, E. From Photon to Oganesson. Lie algebra realization of the Standard Model extending over the Periodic Table. J. Phys.: Conf. Ser. 2021, 2081 012034, 1-12.
  • Trell, E. A bottom-up ‘Game of Lie’ cellular automaton evolution in SO(3) root space both nucleating, crystallizing and space-filling the complete atomic realm. J. Phys.: Conf. Ser. 2022, 2197 012025, 1-15.
  • Bohr, N. Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente. Zeitschr.Phys. 1922, 9, 1-67.
  • Portegeis Zwart, S. Computational astrophysics for the future. Science 2018, 36, 979-980.
  • Trell, E. Self-assembled nanostructures of atoms and molecules with examples of various organic compounds including the proteinogenic amino acids and DNA. Proceedings of IMBIC 2022, 11, 1-9.
  • Rowlands, P. Zero to Infinity. The foundations of Physics; New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, World Scientific, 2007.
  • Scerri, E.R. How Good is the Quantum Mechanical Explanation of the Periodic System? J. Chem. Ed. 1998, 75, 1384-1385.
  • Aspect, A. Bell’s inequality test: more ideal than ever. Nature 1999, 398, 189-190.
Еще
Статья научная