Linear Eсkman friction in the mechanism of the cyclone-anticyclone vortex asymmetry and in a new theory of rotating superfluid

Автор: Chefranov Sergey G

Журнал: Cardiometry @cardiometry

Рубрика: Original research

Статья в выпуске: 4, 2014 года.

Бесплатный доступ

Aims The observed experimental and natural phenomenon of cyclone-anticyclone vortex asymmetry implies that a relatively more stable and showing a longer life, as well as a relatively more intense mode of rotation with an anticyclonic circulation direction (opposite to the direction of rotation of the medium as a whole) is realized as compared with an oppositely directed rotation of the cyclonic vortex mode. Until now, however, it was not a success to identify a universal triggering mechanism responsible for the formation of the corresponding breaking of chiral vortex symmetry. Materials and methods In this paper we reveal the said linear universal instability mechanism of breaking of chiral symmetry in the sign of vortex circulation in the rotating medium in the presence of linear Eckman friction. Results Obtained is a condition for the linear dissipative - centrifugal instability (DCI), which leads (only when considering the external linear Eckman friction for an abovethreshold value of rotation frequency of the underlying boundary surface of fluid) to the breaking of chiral symmetry in the Lagrangian fluid particle dynamics and the corresponding realization of the cyclone-anticyclone vortex asymmetry...

Еще

Dissipative-centrifugal instability, cyclone-anticyclone vortex asymmetry, torsional oscillation, rotating superfluid helium, viscous incompressible fluid, surface friction

Короткий адрес: https://sciup.org/148308779

IDR: 148308779   |   DOI: 10.12710/cardiometry.2014.4.4669

Список литературы Linear Eсkman friction in the mechanism of the cyclone-anticyclone vortex asymmetry and in a new theory of rotating superfluid

  • Nezlin MV, Snegkin EN. The Rossby vortexes and spiral structures. Moscow:Science; 1990.
  • Boubnov BM, Fernando XG. Doklady Akademii Nauk. 1999;35(4):487.
  • Tarasov VF, Makarenko VG. Proceedings of the USSR Academy of Sciences. 1989;305:297.
  • Petviashvili VI. JETP Lett. 1980;32:632.
  • Chefranov SG. JETP Lett. 2001;73:312.
  • Graves LP, McWilliams JC, Montgomery MT. Geophys. Astrophys. Fluid Dyn. 2006;100:151.
  • Ponomarev VM, Hapaev AA, Yakushkin IG. Doklady Akademii Nauk. 2009;425:821.
  • Kostrikin SV, Hapaev AA, Yakushkin IG. JETP Lett. 2011;139:395.
  • Haller G, Beron FJ. Coherent Lagrangian vortices: The black holes of turbulence. arXiv: 1308.2352v1 [physics.ao-ph] 10 Aug 2013.
  • Hoskins BJ, Roy QJ. Met. Soc. 1974;100:480.
  • Molemarker MJ, McWilliams JC, Yavneh I. J. Phys. Ocean. 2004;35:3720.
  • Stegner A, Dritschel DG. J. Phys. Ocean. 2000;30:2562.
  • Polvani LM, McWiliams JC, Spall MA, Ford R. Chaos. 1994;4:177.
  • Blazhko VN, Chefranov SG. Doklady Akademii Nauk. 2005;41:593.
  • Landau LD, Lifshitz EM. Hydrodynamics. Moscow:Science;1986.
  • Hall HE. Proc. Roy. Soc. 1957;A 245:546.
  • Andronikashvili EL, Mamaladze UG, Matinyan SG. Usp Fiz Nauk. 1961;73(3).
  • Kapitza PL. JETP Lett. 1941;11(1).
  • Mamaladze UG, Matinyan SG. Prikl Mat Mekh. 1960;24:473.
  • Osborne DV. Proc Phys Soc Lond. 1950;A 63:909.
  • Feynman RP. Progress in Low Temperature Physics. Vol. 1. North Holland Publ. Co., Amsterdam, 1955.
  • Feynman RP. Rev. Mod. Phys. 1957;29:205.
  • Andronikashvili EL, Kaverkin IP. JETP Lett. 1955;28:126.
  • Dolzhanskii FV, Krimov VA, Manin DY. Usp. Fiz. Nauk, 1990;160(7).
  • Dolzhanskii FV. The base of geophysical hydrodynamics. Gledzer EB, editor. Moscow; 2011. 264p.
  • Batchelor GK. An Introduction to Fluid Dynamics. Cambridge Univ. Press; 1970.
  • Landau LD, Lifshitz EM. Mechanics. Moscow; 1988.
  • Lifshitz EM, Pitaevskii LP. Statistical Mechanics. Moscow; 1978.
  • Atkins KR. Adv. Phys. 1952;1:169.
  • Fabelinskii IL. Usp. Fiz. Nauk. 1997;167:721.
  • Mokhov II, Mokhov OI, Petukhov VK, Khayrullin RR. Izv. Atmos. Ocean. Phys. 1992;28(7).
  • Akperov MG, Bardin MY, Volodin EM, Golitzin GS, Mokhov II. Doklady Akademii Nauk. 2007;43(1).
  • Chhetiani OG. Doklady Akademii Nauk. 2001;37:614.
  • Lyttleton RA. The stability of rotating liquid masses. Cambridge Univ. Press; 1953.
  • Dobrishbman EM, Kochina VG, Letunova TA. Bulletin of the Russian Academy of Sciences. 2013;49(5):540.
  • Hatuntzova ON. CAGI Sci.ed. 2011;1:62.
Еще
Статья научная