Linear operators on abramovich--wickstead type spaces
Автор: Polat Faruk
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.10, 2008 года.
Бесплатный доступ
In this note, we define and investigate Abramovich--Wickstead type spaces the elements of which are the sums of continuous functions and discrete functions. We give an analytic representation of regular and order continuous regular operators on these spaces with values in a Dedekind complete vector lattice.
Cd_0(k)-spaces, quasiregular measure, regular operator
Короткий адрес: https://sciup.org/14318253
IDR: 14318253
Список литературы Linear operators on abramovich--wickstead type spaces
- Abramovich Y. A., Wickstead A. W. Regular operators from and into a small Riesz space//Indag. Math. N. S.-1991.-V. 2, №3.-P. 257-274.
- Abramovich Y. A., Wickstead A. W. Remarkable classes of unital AM-spaces//J. of Math. Analysis and Appl.-1993.-V. 180.-P. 398-411.
- Ercan Z., Alpay S. CD_0(K,E) and CD_w(K,E)-spaces as Banach lattices//Positivity.-2000.-V. 4.-P. 213-225.
- Ercan Z., Onal S. Kakutani-Krein compact space of CD_w(X)-spaces interms of X\otimes{0, 1}//J. of Math. Anal. and Appl.-2006.-V. 313, №2.-P. 611-631.
- Aliprantis C. D., Burkinshaw O. Positive Operators.-New York: Acad. press, 1985.-xvi, 367 p.
- Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and Applications.-Dordrecht: Kluwer Academic Publishers, 1995.-408 p.
- Wright J. D. M. An algebraic characterization of vector lattices with the Borel regularity property//J. London Math. Soc.-1973.-V. 7, № 2.-P. 277-285.
Статья научная