Local competing in interpolation problems

Бесплатный доступ

A simple example illustrates the insufficiency of the known approaches to interpolation in the problem of recovering a function from a few given specific values that clearly convey the form. A local choice between polynomial and rational local interpolants, which minimizes the local interpolant's errors at the nearest external nodes from one or different sides, complements the known approaches. It combines the extreme computational simplicity of local interpolants with the thorought selection of them. The principles of constructing the algorithm are formulated in general terms for mappings of metric spaces. They provide accurate (with rare exceptions) reconstruction of mappings that locally coincide with some of the given possible interpolants. In the one-dimensional case, the two-stage algorithm guarantees the continuity of the interpolant and accurately reconstructs {[itemindent=1cm] polynomials of small degree, simple rational functions with a linear denominator, broken lines of long links with knots at the ends } when these requirements do not contradict each other. An additional parameter allows you to replace the exact restoration of polylines with the required smoothness of interpolation.

Еще

Polynomial interpolation, rational interpolation, spline interpolation, adaptive spline, local algorithm, metric space, explicit formula, a set of patterns

Короткий адрес: https://sciup.org/143175972

IDR: 143175972   |   DOI: 10.25209/2079-3316-2020-11-4-99-122

Список литературы Local competing in interpolation problems

  • P. Thévenaz, T. Blu, M. Unser. “Interpolation revisited”, IEEE Transactions on Medical Imaging, 19:7 (2000), pp. 739–758. https:/"/doi.org/10.1109/42.875199 101
  • R. Delbourgo, J. A. Gregory. “Shape preserving piecewise rational interpolation”, SIAM J. Stat. Comput., 6:4 (1985), pp. 967–976. https:/"/doi.org/10.1137/0906065 100;102
  • Xuli Han. “Shape-preserving piecewise rational interpolant with quartic numerator and quadratic denominator”, Applied Mathematics and Computation, 251 (January 2015), pp. 258–274. https:/"/doi.org/10.1016/j.amc.2014.11.067 102
  • M. S. Floater, K. Hormann. “Barycentric rational interpolation with no poles and high rates of approximation”, Numerische Mathematik, 107:2 (August 2007), pp. 315–331. https:/"/doi.org/10.1007/s00211-007-0093-y 102
  • M. Abbas, A.A. Majid, M. N. H. Awang, J. M. Ali. “Shape-preserving rational bi-cubic spline for monotone surface data”, WSEAS Transactions on Mathematics, 11:7 (July 2012), pp. 644–667. hUtRtpLs::/"/www.wseas.org/multimedia/journals/mathematics/2012/55-211.pdf 100
  • L. Peng, Y. Zhu. “C1 convexity-preserving piecewise variable degree rational interpolation spline”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14:1 (2020), JAMDSM0002. https:/"/doi.org/10.1299/jamdsm.2020jamdsm0002 100
  • B. I. Kvasov. “Monotone and convex interpolation by weighted cubic splines”, Comput. Math. Math. Phys., 53:10 (2013), pp. 1428–1439. MhttNp:://hmttip.ms:a/t/hdnoei.to.rrug/z1v0m.7m86f89/9S205044466913100116 [MathS[RciSNCetI"] 100
  • I. V. Abramenkova, V. V. Kruglov. “Methods for recovering gaps in data arrays”, Software products and systems, 2005, no. 2, pp. 18–22. [RSCI]hUtRtpL:://"www.swsys.ru/download_full.php?101
  • K. Yu. Osipenko. “Optimal interpolation of analytic functions”, Math. Notes, 12:4 (1972), pp. 712–719. hMttNp:://"mi.mathnet.ru/mz9905 101
  • R. Schaback. “Adaptive rational splines”, Constr. Approx., 6:2 (1990), pp. 167–179. https:/"/doi.org/10.1007/BF01889356 102;103
  • G. Wahba, S. Wold. “A completely automatic french curve: fitting spline functions by cross validation”, Communications in Statistics, 4:1 (1975), pp. 1–17. https:/"/doi.org/
  • J. McCrae, K. Singh. “Neatening sketched strokes using piecewise French curves”, SBIM ’11: Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling (Vancouver, British Columbia, Canada, August 5–7, 2011), eds. T. Hammond, A. Nealen, ACM, New York, ISBN 978-1-4503-0906-6, pp. 141–148. https:/"/doi.org/10.1145/2021164.2021190 102
  • H. Akima. “A new method of interpolation and smooth curve fitting based on local procedures”, Journal of the Association for Computing Machinery, 17:4 (1970), pp. 589–602. https:/"/doi.org/10.1145
Еще
Статья научная