Local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines

Автор: Zuеv А.А., Аrngold А.А., Falkova E.V., Tolstopyatov M.I., Dubynin P.А.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.23, 2022 года.

Бесплатный доступ

In this work, an analytical determination of the local heat transfer coefficient in the planes of rotation of gas turbines is carried out using an affine-like model for the distribution of temperature and dynamic spatial boundary layers with a convective component (at Pr < 1). The method of analytical study used in the work led to results close to the experimental values. The problem of determining the thickness of the energy loss is solved using the integral relation of the energy equation of the temperature spatial boundary layer, which makes it possible to integrate the necessary curvature over the surface. The law of heat transfer of the turbulent boundary layer for the rotational motion of the flow and motion according to the law of “solid body” is expressed. Equations are obtained for determining the local heat transfer coefficient by the Stanton criterion for various external flow laws for a power-law velocity distribution in the boundary layer according to the affine-like model of the temperature boundary layer. Heat transfer coefficients correlate with sufficient accuracy with experimental data and dependencies published by other authors: J. M. Owen, L. A. Dorfman, I. V. Shevchuk. The deviation of the results obtained from the dependence of the model with a convective component and with affinity-like profiles do not have statistically significant differences. The obtained results of the study and their comparison with the results of other authors showed that they are suitable for engineering calculations and analysis of the impact of local heat transfer coefficients on high-temperature units of a turbopump unit.

Еще

Rotational motion of the flow, gas cavities of turbopump unit, affine-like model, energy loss thickness equations, heat transfer coefficient

Короткий адрес: https://sciup.org/148329640

IDR: 148329640   |   DOI: 10.31772/2712-8970-2022-23-3-437-450

Список литературы Local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines

  • Kiselev F. D. [Fracture diagnostics and operational workability evaluation of working turbine blades of aircraft engine]. Vestnik Moskovskogo aviatsionnogo institute. 2019, Vol. 26, No. 4, P. 108–122 (In Russ.).
  • Grigor'ev V. A., Zagrebel'nyi A. O., Kalabuhov D. S. [Updating parametric gas turbine engine model with free turbine for helicopters]. Vestnik Moskovskogo aviatsionnogo institute. 2019, Vol. 26, No. 3, P. 137–143 (In Russ.).
  • Mileshin V. I., Semenkin V. G. [Computational study of reynolds number effect on the typical first stage of a high-pressure compressor]. Vestnik Moskovskogo aviatsionnogo institute. 2018, Vol. 25, No. 2, P. 86–98 (In Russ.).
  • Ilinkov A. V., Gabdrakhmanov R. R., Takmovtsev V. V., Shchukin A. V. [Influence of centrif-ugal mass forces on heat transfer during air flow around a concave surface with transverse protru-sions]. Vestnik Moskovskogo aviatsionnogo institute. 2018, Vol. 25, No. 1, P. 39–48 (In Russ.).
  • Gorelov Yu. G., Strokach E. A. [Analysis of regularities of calculation of the heat transfer coef-ficient from gas at the inlet edges of the nozzle blades of high-pressure turbines]. Vestnik Moskovskogo aviatsionnogo institute. 2016, Vol. 23, No. 1, P. 80–85 (In Russ.).
  • Shcherbakov M. A., Vorobyev D. A., Maslakov S. A., Ravikovich Yu. A. [Determination of the heat transfer coefficient on the turbine blade at off-design operating conditions]. Vestnik Moskovskogo aviatsionnogo institute. 2013, Vol. 20, No. 3, P. 95–103 (In Russ.).
  • Kraeva E. M. [Energy parameters of high-speed pumps of low flow]. Vestnik Moskovskogo aviatsionnogo institute. 2011, Vol. 18, No. 3, P. 104–109 (In Russ.).
  • Zuev A. A., Nazarov V. P., Arngold A. A., Petrov I. M. [Disk friction in determining the bal-ance of power turbopump rocket engine]. PNRPU Aerospace Engineering Bulletin. 2019, No. 57, P. 17–31 (In Russ.).
  • Zuev A. A., Nazarov V. P., Arngold A. A., Petrov I. M. [The method of the disk friction deter-mining of low mass flow centrifugal pumps]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 2, P. 219–227 (In Russ.). DOI: 10.31772/2587-6066-2019-20-2-219-227.
  • Lai F., Zhu X., Li G., Zhu L., Wang F. Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters. Energy Procedia. 2019, Vol. 158, Р. 5523–5528. DOI: 10.1016/j.egypro.2019.01.592.
  • Jiang W., Li G., Liu P., Fu L. Numerical investigation of influence of the clocking effect on the unsteady pressure fluctuations and radial forces in the centrifugal pump with vaned diffuser. Inter-national Communications in Heat and Mass Transfer. 2016, Vol. 71, Р. 164–171. DOI: 10.1016/j.icheatmasstransfer.2015.12.025.
  • Lorusso M., Capurso T., Torresi M., Fortunato B., Fornarelli F., Camporeale S. M., Monteriso R. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia. 2017, Vol. 126, P. 778–785. DOI: 10.1016/j.egypro.2017.08.262.
  • Wang C., Shi W., Wang X., Jiang X., Yang Y., Li W., Zhou L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy. 2017, Vol. 187, P. 10–26. DOI: 10.1016/j.apenergy.2016.11.046.
  • Bakhshan Y., Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method. Physica A: Statistical Mechanics and Its Applications. 2015, Vol. 440, P. 161–175. DOI: 10.1016/j.physa.2015.08.012.
  • Basit M. A., Tian W., Chen R., Qiu S., Su G. Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method. Nuclear Engineering and Technology. 2019. DOI: 10.1016/j.net.2019.06.001.
  • Galaktionov A. Yu., Khlupnov A. I. [Numerical calculation of unsteady aerodynamic charac-teristics of cylinder models for supersonic laminar flow]. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana. 2015, No. 5, P. 4–13 (In Russ.). DOI: 10.18698/0236-3941-2015-5-4-13.
  • Afanas'ev V. N., Egorov K. S., Kong Dehai [Turbulence Model Validation During Analysis of the Turbulent Boundary Layer Structure near a Rectangular Ridge on a Plate]. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Mashinostr. 2018, No. 6, P. 72–89 (In Russ.). DOI: 10.18698/0236-3941-2018-6-72-89.
  • Shlikhting G. Teoriya pogranichnogo sloya [The theory of the boundary layer]. Moscow, Science Publ., 1974, 712 p.
Еще
Статья научная