Magnetic properties and electric polar-ization at heterogeneous substitution in bismuth pyrostannate Bi2(Sn0.9Ме0.1)2O7, Ме = Cr3+, Fe3+

Автор: Udod L.V., Romanova O.B., Sitnikov M.N., Abdelbaki H.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Technological processes and material science

Статья в выпуске: 3 vol.23, 2022 года.

Бесплатный доступ

Bismuth pyrostannate Bi2Sn2O7 is a diamagnet and belongs to the structural type of the A2B2O7 pyro-chlore class. In this class of compounds, in the presence of magnetic ions, very interesting magnetic proper-ties appear. Chromium- and iron-substituted bismuth pyrostannates Bi2(Sn0.9Me0.1)2O7, Me = Cr, and Fe were synthesized by solid-phase synthesis. X-ray diffraction analysis showed that the samples correspond to the Pc monoclinic cell of the Bi2Sn2O7 α-phase at room temperature. The magnetic properties up to 1100 K in magnetic fields up to 0.86 T and the electric polarization at frequencies of 10, 3, and 1 mHz in the tem-perature range 80–550 K have been studied. The effect of heterogeneous substitution by Cr3+ and Fe3+ ions on the magnetic properties and electric polarization of bismuth pyrostannate is investigated. An analysis of the experimental data revealed the dependence of the magnetic properties on the degree of filling of the elec-tron shells of chromium and iron ions. The Bi2(Sn0.9Cr0.1)2O7 compound exhibits ferromagnetic properties, while Bi2(Sn0.9Fe0.1)2O7 exhibits antiferromagnetic properties. In chromium-substituted bismuth pyrostan-nate during the α→β transition, the paramagnetic Curie temperature increases by a factor of 3. The temper-ature dependence of the inverse magnetic susceptibility is characterized by hysteresis in the temperature range of 400–900 K. The reverse magnetic susceptibility of Bi2(Sn0.9Fe0.1)2O7 in the entire temperature range is satisfactorily described by the Curie-Weiss law. Studies of the magnetic properties have established that the Fe3+ ions are in a high-spin state. The polarization hysteresis in Bi2(Sn0.9Cr0.1)2O7 is found, which shifts along the polarization axis and depends on temperature. Bi2(Sn1-xFex)2O7, x=0.1 is characterized by a linear field dependence. With an increase in the concentration of iron ions, a hysteresis arises in the field dependence of the electric polarization. The hysteresis of polarization in Bi2(Sn0.9Cr0.1)2O7 which depends on temperature was found. The nonlinear field dependence of the polarization in Bi2(Sn0.8Fe0.2)2O7 can be ex-plained by the interaction of the dipole and migration polarizations and the presence of oxygen vacancies. For the Bi2(Sn0.9Cr0.1)2O7 compound, a transition to the dipole glass state was found. In the β-phase of Bi2(Sn0.8Fe0.2)2O7 above T = 400 K, no polarization hysteresis is observed and the electron-relaxation polar-ization predominates. The mechanism of the occurrence of electronic polarization is explained with the ap-pearance of anionic vacancies upon heterogeneous substitution of tin ions.

Еще

X-ray diffraction analysis, electric polarization, magnetic susceptibility, electric polarization hysteresis

Короткий адрес: https://sciup.org/148329651

IDR: 148329651   |   DOI: 10.31772/2712-8970-2022-23-3-561-571

Список литературы Magnetic properties and electric polar-ization at heterogeneous substitution in bismuth pyrostannate Bi2(Sn0.9Ме0.1)2O7, Ме = Cr3+, Fe3+

  • Tarasenko T. N., Mikhailov V. I., Kravchenko Z. F., Burkhovetsky V. V., Kamenev V. I., Izotov A. I., Legenkiy Yu. A., Demidenko O. F., Yanushkevich K. I., Aplesnin S. S. Effect of cationic substi-tution on the crystal structure, magnetic and electrical properties of BiFe1-xMnxO3 (x = 0.05 and 0.15). Izv. RAN. Physical series. 2020, Vol. 84, P. 1307–1309.
  • Romanova O. B., Aplesnin S. S, Sitnikov M. N., Udod L. V., Begisheva O. B., Demidenko O. F. Magnetoresistive effect in the cobalt-doped bismuth ferrite films. J. Materials Science: Materials in Electronics. 2020, Vol. 31, P. 7946. https://doi.org/10.1007/s10854-020-03333-7.
  • Aplesnin S. S., Masyugin A. N., Rybina U. I., Tarasenko T. N. and Yanushkevich K. I. Low-temperature phase transition in bismuth ferrite films substituted by manganese. IOP Conf. Series: Ma-terials Science and Engineering. 2020, Vol. 822, P. 012021. DOI:10.1088/1757-899X/822/1/012021012021.
  • Masyugin A. N., Aplesnin S. S., Loginov Y. Y. and Bandurina O. N. Magnetoelectric effect in bismuth – neodymium ferrite – garnet films. IOP Conf. Series: Materials Science and Engineering. 2020, Vol. 822, P. 012025. DOI: 10.1088/1757-899X/822/1/012025.
  • Aplesnin S. S., Masyugin A. N., Kretinin V. V., Yanushkevich K. I. Regulating the BiMnxFe1-xO3 film conductivity upon cooling in magnetic and electric fields. Mater. Research Express. 2019, Vol. 6, P. 116125. DOI: doi.org/10.1088/2053-1591/ab4ec7.
  • Romanova O. B., Aplesnin S. S., Sitnikov M. N., Udod L. V. Magnetotransport effects and elec-tron phase separation in manganese sulfides with electron-hole doping. ZhETF. 2021, Vol. 159, P. 1–14. DOI: 10.31857/S0044451021030000.
  • Romanova O. B., Aplesnin S. S., Udod L.V. Effect of electron and hole doping on the transport characteristics of chalcogenide systems. Solid State Phys. 2021, Vol. 63, P. 606–609. DOI: 10.21883/FTT.2021.05.50808.269.
  • Aplesnin S. S., Yanushkevich K. I. Changes in the magnetoresistance in MnSe1-XTeX manga-nese chalcogenides upon transition from bulk samples to thin-film ones. Siberian Aerospace Journal. 2020, Vol. 21, No. 2, P. 254–265. DOI: 10.31772/2587-6066-2020-21-2-254-265.
  • Aplesnin S. S., Kharkov A. M., Filipson G. Yu. Magnetic Capacitance in Variable-Valence Manganese Sulfides. Phys. Status Solidi B. 2020, Vol. 257, P. 1900637. DOI 10.1002/pssb.201900637.
  • Romanova O. B., Aplesnin S. S., Udod L. V., Sitnikov M. N., Kretinin V. V., Yanushkevich K. I., Velikanov D. A. Magnetoresistance, magnetoimpedance, magnetothermopower, and photoconduc-tivity in silver-doped manganese sulfides. J. Appl. Phys. 2019, Vol. 125, P. 175706. DOI: https://doi: 10.1063/1.5085701.
  • Aplesnin S. S., Sitnikov M. N., Kharkov A. M., Masyugin A. N., Kretinin V. V., Fisenko O. B., Gorev M. V. Magnetoelectric Effect in a Paramagnetic Region in Gd0.15Mn0.85Se. Physics of the Solid State, 2019, Vol. 61, No. 8, P. 1379–1382. DOI: 10.1134/S1063783419080067.
  • Aplesnin S. S., Masyugin A. N., Volochaev M., Ishibashi T. Coexistence of the electric polari-zation and conductive current in the bismuth–neodymium ferrite garnet films. J Mater Sci: Mater Electron. 2021, Vol. 32, P. 3766–3781. DOI: https://doi.org/10.1007/s10854-020-05121-9.
  • Aplesnin S. S., Sitnikov M. N., Zhivul’ko A. M. Magnetocapacity in the Paramagnetic Region in a Cation-Substituted Manganese Selenide. Phys. Solid State. 2018, Vol. 60, P. 673–680.
  • Aplesnin S. S., Masyugin A. N., Sitnikov m.N.., Ishibashi T. Influence of the Substrate on the Magnetoelectric Effect of Rare-Earth-Substituted Bismuth Ferrite Garnet Films. Letters to JETF. 2019, Vol. 110, P. 204–212. DOI: https://doi.1134/S0370274X19150128. 15. Greedan J. E. Geometrically frustrated magnetic materials. J. Mater. Chem. 2001, Vol. 11, P. 37
  • Petrakovskii G. A., Loseva G. V., Ryabinkina L. I., Aplesnin S. S. Metal-insulator transition and magnetic properties in disordered systems of solid solutions MexMn1-xS. JMMM. 1995, Vol. 140–144 (PART 1), P. 147–148.
  • Aplesnin S. S. Influence of spin-phonon coupling on the magnetic moment in 2D spin-1/2 anti-ferromagnet. Phys. Lett. Section A: General, Atomic and Solid State Physics. 2003, Vol. 313 (1–2), P. 122–125.
  • Aplesnin S. S. A study of anisotropic Heisenberg antiferromagnet with S = 1/2 on a square lat-tice by Monte-Carlo method. Phys. Status Solidi (B) Basic Research. 1998, Vol. 207 (2), P. 491–498.
  • Aplesnin S. S. Monte?Carlo Study of Two?Dimensional Quantum Antiferromagnets with Ran-dom Anisotropies and Spin S = 1 // Physica Status Solidi (b). 1989. Vol. 153 (1). P. K79–K84.
  • Champion J. D. M., Wills A. S., Fennell T., Bramwell S. T., Gardner J. S., Green M. A. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7. Phys. Rev. B. 2001, Vol. 64, P.140407(R).
  • Aplesnin S. S. Dimerization of antiferromagnetic chains with four-spin interactions. Phys. Solid State. 1996, Vol. 38 (6), P. 1031–1036.
  • Aplesnin S. S. Quantum Monte Carlo analysis of the 2D Heisenberg antiferromagnet with S = 1/2: The influence of exchange anisotropy. J. Phys. Condens. Matter. 1998, Vol. 10 (44), P. 10061–10065.
  • Aplesnin S. Existence of massive singlet excitations in an antiferromagnetic alternating chain with S=1/2. Phys. Rev. B – Conden. Matter and Materials Physics. 2000, Vol. 61 (10), P. 6780–6784.
  • Aplesnin S. S. Nonadiabatic interaction of acoustic phonons with spins S = 1/2 in the two-dimensional heisenberg model. J. Experimental and Theoretical Physics. 2003, Vol. 97, Is. 5, P. 969–977.
  • Aplesnin S. S., Moskvin A. I. Magnetic structures upon ordering of eg orbitals in a square lat-tice. J. Phys. Condens. Matter. 2008, Vol. 20 (32), P. 325202.
  • Aplesnin S. S. Two-dimensional quantum spin liquid with S = 1/2 spins interacting with acous-tic phonons. Phys. Lett. Section A: General, Atomic and Solid State Physics. 2004, Vol. 333, Is. 5–6, P. 446–449.
  • Bramwell S. T., Harris M. J. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys.: Cond. Matter. 1998, Vol. 10, L215.
  • Subramanian, M. A., Calabrese, J. C., Torardi, C. C., Gopalakrishnan, J., Askew, T. R. Crystal structure of the high-temperature superconductor TI2Ba2CaCu2O8. Nature. 1988, Vol. 332, P. 420–422. DOI: 10.1038/332420A0.
  • Greedan J. E., Raju N. P., Maignan A., Simon Ch., Pedersen J. S., Niraimathi A. M., Gmelin E., and Subramanian M. A. Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure. Phys. Rev. B. 1996, Vol. 54, P. 7189.
  • Subramanian M. A., Toby B. H., Ramirez A. P., Marshall W. J., Sleight A. W., Kwei G.H. Co-lossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Tl2Mn2O7. Science. 1996, Vol. 273, P. 81.
  • Aplesnin S. S., Udod L. V., Sitnikov M. N., Shestakov N. P. Bi2(Sn0.95Cr0.05)2O7: Structure, IR spectra, and dielectric properties. Ceramics International. 2016, Vol. 42, P.5177–5183.
  • Aplesnin S. S., Udod L. V., Sitnikov M. N. Electronic transition, ferroelectric and thermoelec-tric properties of bismuth pyrostannate Bi2(Sn0.85Cr0.15)2O7. Ceramics International. 2018, Vol. 44, P. 1614–1620.
  • Aplesnin S. S., Udod L.V., Sitnikov M.N., Kretinin V. V., Molokeev M. S. and Mironova-Ulmane N. Dipole glass in chromium-substituted bismuth pyrostannate. Mater. Res. Express. 2018, Vol. 5, P. 115202. DOI: https://doi.org/10.1088/2053-1591/aaddd934.
  • Aplesnin S. S., Udod L. V., Loginov Y. Y., Kretinin V. V., Masyugin A. N. Influence of cation substitution on dielectric and electric properties of bismuth stannates Bi2Sn1.9Me0.1O7 (Me=Cr, Mn). IOP Conf. Series: Materials Science and Engineering. 2019, Vol. 467, P. 012014(5).
  • Udod L. V., Aplesnin S. S., Sitnikov M. N., Romanova O. B., Molokeev M. N. Phase transi-tions in bismuth pyrostannate upon substitution of tin by iron ions. J. All. Compound. 2019, Vol. 804, P. 281–287. DOI: https://doi.org/10.1016/j.jallcom.2019.07.020.
  • Udod L., Aplesnin S., Sitnikov M., Romanova O., Bayukov O., Vorotinov A., Velikanov D., Patrin G. Magnetodielectric effect and spin state of iron ions in iron-substituted bismuth pyrostannate. EPJP. 2020, Vol. 135, Article number: 776. DOI: https://doi.org/10.1140/epjp/s13360-020-00781-2.
  • Kobune M., Ishito H., Mineshige A., Fujii1 S., Tomozawa R. T. Relationship between Pyroe-lectric Properties and Electrode Sizes in (Pb, La)(Zr, Ti)O3 (PLZT) Thin Films. J. Apl. Phys. 1998, Vol. 37, P. 5154.
  • Aurisicchio C., Fioravanti G., Grubessi O., Zanazzi. P.F. Reappraisal of the crystal chemistry of beryl. American Mineralogist. 1988, Vol. 73, Is. 7, P. 826–837.
Еще
Статья научная