Математическая модель задержки на основе СМО с гиперэкспоненциальным и эрланговским распределениями

Бесплатный доступ

Настоящая статья посвящена исследованию и получению решения в замкнутой форме для средней задержки требований в очереди для системы массового обслуживания, образованной двумя потоками с гиперэкспоненциальным и эрланговским законами распределения интервалов. Сочетание этих законов распределений обеспечивает коэффициент вариации интервалов входного потока больше единицы, а для времени обслуживания - меньше единицы. Учет коэффициентов вариации как числовых характеристик в теории массового обслуживания важен, т. к. главная характеристика системы массового обслуживания - средняя задержка связана с этими коэффициентами вариации квадратичной зависимостью. В теории массового обслуживания исследования систем G/G/1 актуальны в связи с тем, что они могут быть использованы при моделировании систем передачи данных различного назначения. Для решения поставленной задачи использован метод спектрального разложения решения интегрального уравнения Линдли. Данный метод позволил получить спектральное разложение, а через него решение для средней задержки требований в очереди для рассматриваемой системы в замкнутой форме. Для практического применения полученных результатов использован метод моментов теории вероятностей.

Еще

Гиперэкспоненциальное и эрланговское распределения, интегральное уравнение линдли, метод спектрального разложения, преобразование лапласа

Короткий адрес: https://sciup.org/140290777

IDR: 140290777   |   DOI: 10.18469/1810-3189.2022.25.1.16-20

Список литературы Математическая модель задержки на основе СМО с гиперэкспоненциальным и эрланговским распределениями

  • Тарасов В.Н. Расширение класса систем массового обслуживания с запаздыванием // Автоматика и телемеханика. 2018. № 12. С. 57–70. DOI: https://doi.org/10.1134/S0005117918120056
  • Тарасов В.Н. Анализ и сравнение двух систем массового обслуживания с гиперэрланговскими входными распределениями // Радіоелектроніка, інформатика, управління. 2018. № 4. С. 61–70. DOI: https://doi.org/10.15588/1607-3274-2018-4-6
  • Тарасов В.Н. Исследование и сравнение двойственных систем E2/M/1 и M/E2/1 // Инфокоммуникационные технологии. 2019. Т. 17, № 2. С. 157–162. DOI: https://doi.org/10.18469/ikt.2019.17.2.03
  • Тарасов В.Н., Липилина Л.В., Бахарева Н.Ф. Автоматизация расчета характеристик систем массового обслуживания для широкого диапазона изменения их параметров // Информационные технологии. 2016. Т. 22, № 12. С. 952–957. URL: http://novtex.ru/IT/it2016/it1216_web-952-957.pdf
  • Клейнрок Л. Теория массового обслуживания / пер. с англ. под ред. В.И. Неймана. М.: Машиностроение, 1979. 432 с.
  • Brännström N. A Queueing Theory Analysis of Wireless Radio Systems: master’s thesis applied to HS-DSCH. Lulea University of Technology, 2004. 79 p. URL: http://ltu.diva-portal.org/smash/get/diva2:1016709/FULLTEXT01
  • Алиев Т.И. Основы моделирования дискретных систем. СПб.: СПбГУ ИТМО, 2009. 363 с.
  • Myskja A. An improved heuristic approximation for the GI/GI/1 queue with bursty arrivals // Teletraffic and Datatraffic in a Period of Change, ITC-13: proc. of congress. Copenhagen, Denmark. 19–26 June 1991. P. 683–688. URL: https://gitlab2.informatik.uni-wuerzburg.de/itc-conference/itc-conference-public/-/raw/master/itc13/myskja911.pdf?inline=true
  • Whitt W. Approximating a point process by a renewal process, I: Two basic methods // Operation Research. 1982. Vol. 30, no. 1. P. 125–147. DOI: https://doi.org/10.1287/opre.30.1.125
  • Малахов С.В., Тарасов В.Н. Экспериментальные исследования производительности сегмента программно-конфигурируемой сети // Интеллект. Инновации. Инвестиции. 2013. № 2. С. 81–85.
  • Проектирование и моделирование сетей ЭВМ в системе OPNET MODELER / В.Н. Тарасов [и др.]. Самара: ПГАТИ, 2008. 233 с.
  • Тарасов В.Н., Бахарева Н.Ф. Компьютерное моделирование вычислительных систем. Теория, Алгоритмы, Программы. Оренбург: ОГУ, 2005. 183 с.
  • Jennings O.B., Pender J. Comparisons of ticket and standard queues // Queueing Systems. 2016. Vol. 84, no. 1–2. P. 145–202. DOI: https://doi.org/10.1007/s11134-016-9493-y
  • Gromoll H.C., Terwilliger B., Zwart B. Heavy traffic limit for a tandem queue with identical service times // Queueing Systems. 2018. Vol. 89, no. 3–4. P. 213–241. DOI: https://doi.org/10.1007/s11134-017-9560-z
  • Legros B. M/G/1 queue with event-dependent arrival rates // Queueing Systems. 2018. Vol. 89, no. 3–4. P. 269–301. DOI: https://doi.org/10.1007/s11134-017-9557-7
  • Jacobovic R., Kella O. Asymptotic independence of regenerative processes with a special dependence structure // Queueing Systems. 2019. Vol. 93, no. 1–2. P. 139–152. DOI: https://doi.org/10.1007/s11134-019-09606-1
  • Demichelis C., Chimento P. IP Packet Delay Variation Metric for IP Performance Metrics. URL: https://tools.ietf.org/html/rfc3393
Еще
Статья научная