Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model
Автор: Makarov S. N., Verhoglyad A. G., Stupak M. F., Ovchinnikov D. A., Oberemok J. A.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 1 vol.22, 2021 года.
Бесплатный доступ
A mirror geometry control system for the Millimetron Observatory is being created to work as part of the on-board complex of scientific equipment. The system is designed to monitor the quality of the space telescope’s mirror system and use the data received as feedback signals for pre-setting and tuning the telescope’s optical system in outer space. The goal of the system is estimation of the multidimensional vector of unknown parameters of the telescope’s mirror system by indirect measurements obtained as a result of the measurement of the telescope by 3D scanning. A mathematical model has been created, numerically describing the process of pre-measurement of the mirror system of the Millimetron Observatory using optical control marks on the surface of the mirror system. The linear mathematical model allows to link the actual indirect measurements of the mirror system with the unknown biases of its parameters, determining the shape of the telescope. A formula has been developed for the optimal reverse problem solver in the process of pre-measurement of the mirror system. The method of measuring the components of the telescope as part of its pre-setting is described. The measurement of control marks is based on a onboard 3D scanner embedded in the design of the mirror system control system. The error analysis was carried out using the optimal solver, and a covariance matrix was obtained for the error vector of estimated parameter.
Mathematical model, mirror system of the Millimeteron Observatory, control system, telescope shape, control marks, 3D scanner.
Короткий адрес: https://sciup.org/148321794
IDR: 148321794 | DOI: 10.31772/2712-8970-2021-22-1-151-165
Список литературы Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model
- Kardashev N. S., Novikov I. D., Lukash V. N. et al. Review of scientific topics for Millimetron space observatory. Phys. Usp. 2014, Vol. 57, P. 1199–1228. Doi: 10.3367/UFNe.0184.201412c.1319.
- Smirnov A. V., Baryshev A. M., Pilipenko S. V. et al. Space mission Millimetron for terahertz astronomy. Proc. of SPIE. 2012, Vol. 8442, P. 84424C. DOI: 10.1117/12.927184.
- The website of the AStrospace Center of FIAN, Moscow. Available at: http://millimetron.web2.ru/ru/ (accessed: 02.02.2021).
- Lukin A. V., Melnikov A. N., Skolyarov A. F. [Control of the mirror counter-reflector of the telescope Millimetron based on the use of a synthesized hologram]. Photonics. 2016, No. 5, P. 44–48. (In Russ.)
- Poleschuk A. G., Nasyrov R. K., Matochkin A. E. et al. [Development of the interfering-holographic IR system to control the shape of the central parabolic mirror of the Millimetron Observatory space telescope]. Works of Interexpo Geo-Siberia. 2015, Vol. 1, P. 51–58. (In Russ.)
- Verhoglyad A. G., Michalkin V. M., Kuklin V. A., Halimanovitch V. I., Chugui Y. V. [System of control of geometric parameters of the central mirror of the Millimetron Space Telescope]. Collection of works “Reshetnev Readings”. 2014, Vol. 1 (18), P. 61–63. (In Russ.)
- Kirichenko D. V., KleimyonovV. V., Novikova E. V.] Large Optical Space Telescopes]. Izv. Universities. Instrumentation. 2017, Vol. 60, No. 7, P. 589–602. Doi: 10.17586/0021-3454-2017-60-7-589-602. (In Russ.)
- Demin A. V., Denisov A. V., Letunovsky A. V. [Optical-digital systems and space systems]. Izv. Universities. Instrumentation. 2010, Vol. 53, No. 3, P. 51–59. (In Russ.)
- Demin A. V. [A mathematical model of the process of justation of composite mirrors]. I'm a Universities. Instrumentation. 2015, Vol. 58, No. 11, P. 901–907. Doi: 10.17586/0021-3454-2015-58-11-901-907. (In Russ.)
- Demin A. V., Rostokin P. V. Algorithm of Composite Mirrors. Computer optics. 2017, Vol. 41, No. 2. P. 291–294. Doi: 10.18287/2412-6179-2017-41-2-291-294.
- Olczak G., Wells C., Fischer D. J., Connolly M. T. Wavefront calibration testing of the James Webb Space Telescope primary mirror center of curvature optical assembly. Proceedings of SPIE. 2012, Vol. 8450, P. 84500R. Doi: 10.1117/12.927003.
- Conquet B., Zambrano L. F., Artyukhina N. K., Fiodortsev R. V., Sitie A. R. Algorithm and mathematical model for geometric positioning of segments on aspherical composite mirror. Devices and measurement methods. 2018, Vol. 9, No. 3, P. 234–242. Doi: 10.21122/2220-9506-2018-9-3- 234-242.
- Batshev V. I., Puryaev D. T. [Optical System and Positioning Control Techniques of the Composite Parabolic Mirror segments of the Millimetron Space Observatory radio telescope]. Measuring Technology. 2009, No. 5, P. 29–31. (In Russ.)
- Puryaev D. T., Batshev V. I., Pashevova O. V. [Method of quality control of the convex hyperbolic mirror of the space observatory Millimetron radio telescope]. Journal of Engineering: Science and Innovation. 2013, No. 7. Available at: http://engjournal.ru/catalog/pribor/optica/833.html (accessed: 02.02.2021).
- Sychev V. V., Klem A. I. [The multi-cell mirror control algorithm is based on the Millimetron Space Telescope]. Atmosphere and Ocean Optics. 2018, No. 7, P. 578–586. Doi: 10.15372/ AOO20180712. (In Russ.)
- Somov S. E. The orientation and calibration of the information and measurement system to determine the orientation of the survey satellite and its observation equipment. News of the Samara Research Center of the Russian Academy of Sciences. 2018, Vol. 20, No. 1-1, P. 87–96. Doi: 10.24411/1990-5378-2018-00127.
- Makarov S. N., Verhoglyad A. G., Stupak M. F., Ovchinnikov D. A., Oberemok J. A. Mathematical modeling of the work of the 3D scanner of the mirror system control system of the Observatory “Millimetron”. Reshetnev readings. 2020, Part. 1, P. 101–102.
- Fichtenholz G. M. Kurs differentsial'nogo i integral'nogo ischisleniya [Course of differential and integral calculus]. Moscow, Fismatlit Publ., 2003, 680 p.
- Shiryaev N. Chapter 2, § 6. Random magnitude II. Probability. Cambridge, New York, ICNMO, 2004. Vol. 1. P. 301–520.
- Beklemishev D. V. Dopolnitel'nye glavy lineynoy algebry [Additional chapters of linear algebra]. Moscow, Nauka Publ., 1983.