Mechanisms of tumor-associated cardiac muscle damage under different variants of melanoma growth

Автор: Kit Oleg I., Shikhlyarova Alla I., Frantsiyants Elena M., Neskubina Irina V., Kaplieva Irina V., Bandovkina Valeriya A., Zhukova Galina V., Trepitaki Lidia K., Pogorelova Yulia A., Cheryarina Natalia D., Kotieva Inga M., Shlyk Sergey V., Vereskunova Aleksandra A., Gusareva Marina A., Pozdnyakova Viktoria V., Zakharova Natalia A., Bosenko Ekaterina S., Surikova Ekaterina I.

Журнал: Cardiometry @cardiometry

Статья в выпуске: 24, 2022 года.

Бесплатный доступ

In case of the presence of a malignant process in an organism, the heart is subjected to an additional loading due to a unique combination of the external factors that is determined by the tumor biology and potentially cardiotoxic treatment actions and effects. It should be mentioned that cardiomyocytes have the same pathways of responding to stress and metabolic strategies as it is the case with the tumor cells, and this suggests that metabolic changes in the course of the tumor progression make their impact on the non-malignant tissue. Aim. The aim of our research work has been to study the level of the indices of the activity of free-radical processes and the hypoxia factor in cardiac mitochondria in mice under the different rates of the growth of B16 melanoma, growing either independently or against the background of chronic neurogenic pain. Materials and methods. In our experiment, we have used mice of both sexes of strain C57BL/6 (n = 56) and strain C57BL/6-Plautm1.1Bug - ThisPlauGFDhu/GFDhu (with uPA gene-knockout) (n = 56). We have composed the following experimental groups: an intact animal group (♂ n = 7; ♀ n = 7); a reference group (♂ n = 7, ♀ n = 7) with reproduction of the model of chronic neurogenic pain (CNP); a comparison group (♂ n = 63, ♀ n = 63) with a standard subcutaneous inoculation of melanoma (B16/F10), upon 2 weeks of the tumor growth; the main test group (♂ n = 63, ♀ n = 63) (CNP+B16/F10) with melanoma transplanted 3weeks after reproduction of the CNP model, with a tumor growing time of 2 weeks. After decapitation of the animals, the heart was harvested and mitochondria were isolated using the differential centrifugation with a highspeed refrigerated centrifuge. In the prepared mitochondria specimens with the use of ELISA assays we have determined concentrations of SOD 2 (pg/mg protein), GPx-1 (ng/mg protein), MDA mcM/g protein); AOPP (mcM/g protein); 8-hydroxy 2’ deoxyguanosine (8-OHdG) (ng/mg protein); the amount of protein (mg/mL) has been determined with a biochemical assay method, namely with the Biuret assay (Olvex Diagnosticum, Russia). The obtained statistics data have been processed with software Statistica 10.0. Results. In the female mice of strain C57BL/6, when comparing the studied data in cardiac mitochondria between the groups with the independent growth of melanoma and that in combination with CNP, we have revealed the higher levels of MDA increased by a factor of 1,8 (p function show_abstract() { $('#abstract1').hide(); $('#abstract2').show(); $('#abstract_expand').hide(); }

Еще

Mitochondria, heart, lipid peroxidation, antioxidant system, chronic neurogenic pain, melanoma b16/f10, mice

Короткий адрес: https://sciup.org/148326578

ID: 148326578   |   DOI: 10.18137/cardiometry.2022.24.121133

Список литературы Mechanisms of tumor-associated cardiac muscle damage under different variants of melanoma growth

  • Caro-Codón J, et al. CARDIOTOX registry investigators. Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: insights from the CARDIOTOX registry. Eur J Prev Cardiol. 2020:zwaa034. doi: 10.1093/eurjpc/zwaa034.
  • de Boer RA, et al. A new classification of cardio-oncology syndromes. Cardio-oncology (London, England). 2021;7(1):24. doi:10.1186/s40959-021-00110-1.
  • Hou Y, et al. Cardiac risk stratification in cancer patients: A longitudinal patient-patient network analysis. PLoS medicine. 2021;18(8): e1003736.doi:10.1371/journal.pmed.1003736.
  • Gilchrist SC, et al. Cardio-Oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: A scientific statement from the American Heart Association. Circulation. 2019;139(21):e997–e1012. doi: 10.1161/CIR.0000000000000679.
  • Lenneman CG, Sawyer DB. Cardio-Oncology: An update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008–20. doi: 10.1161/CIRCRESAHA.115.303633.
  • Saiki H, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017; 135(15):1388–96. doi: 10.1161/CIRCULATIONAHA.116.025434.
  • Mahmood SS, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018; 71(16):1755–64. doi: 10.1016/j.jacc.2018.02.037.
  • Salem JE, et al. Cardiovascular toxicities associated with Ibrutinib. J Am Coll Cardiol. 2019; 74(13): 1667–78. doi: 10.1016/j.jacc.2019.07.056.
  • Guha A, Desai NR, & Weintraub NL. (2021). Assessing cardiovascular risk in cancer patients: opportunities and challenges. European journal of preventive cardiology, 28(9), e45–e46. doi:10.1177/2047487320943002.
  • Karlstaedt A, Khanna R, Thangam M, Taegtmeyer H. Glucose 6-phosphate accumulates via phosphoglucose isomerase inhibition in heart muscle. Circ Res. 2020; 126:60–74. doi: 10.1161/CIRCRESAHA.119.315180.
  • Ritterhoff J, Young S, Villet O. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res. 2020; 126: 182–196. doi: 10.1161/CIRCRESAHA.119.315483.
  • Karlstaedt A, et al. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci. 2021; 6(8): 705-718. doi: 10.1016/j.jacbts.2021.05.008.
  • Koelwyn G. J., Newman A., Afonso M. S., van Solingen C., et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nature medicine. 2020; 26(9): 1452–1458. doi:10.1038/s41591-020-0964-7.
  • Frantsiyants EM, et al. State of free-radical processes in the heart cell mitochondria under melanoma В16/F10 growth against the background of chronic neurogenic pain as comorbid pathology. Cardiometry. 2021. № 18. С. 131-137. doi: 10.18137/cardiometry. 2021.18.131137;
  • Frantsiyants EM, et al. Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16/F10 linked with comorbid pathology. Cardiometry. 2021. № 18. С. 121-130. doi: 10.18137/cardiometry.2021.18.121130
  • Frantsiyants EM, et al. The effect of diabetes mellitus under tumor growth on respiratory function and free radical processes in heart cell mitochondria in rats. Cardiometry. 2021. № 18. С. 50-55. doi: 10.18137/cardiometry.2021.18.5055;
  • Frantsiyants EM, et al. The functional state of mitochondria of cardiomyocytes in a malignant process against the background of comorbid pathology in the experiment. South Russian journal of oncology. 2021; 2(3): 13-22. doi: 10.37748/2686-9039-2021-2-3-2.
  • Treede RD, et al. A classification of chronic pain for ICD-11. Pain. 2015; 156: 1003–1007. doi:10.1097/j.
  • Bruehl S, et al. Chronic pain-related changes in cardiovascular regulation and impact on comorbid hypertension in a general population: the Tromsø study. Pain. 2018 Jan; 159(1): 119-127. doi: 10.1097/j.pain.0000000000001070. PMID: 28953193.
  • Paccione CE, Jacobsen HB. Motivational Non-directive Resonance Breathing as a Treatment for Chronic Widespread Pain. Frontiers in psychology. 2019; 10: 1207. doi:10.3389/fpsyg.2019.01207
  • Paccione CE, et al. The indirect impact of heart rate variability on cold pressor pain tolerance and intensity through psychological distress in individuals with chronic pain: the Tromsø Study. Pain reports. 2021; 7(2):e970. doi:10.1097/PR9.0000000000000970
  • Karekar P, et al. Tumor-Induced Cardiac Dysfunction: A Potential Role of ROS. Antioxidants (Basel, Switzerland). 2021; 10(8): 1299. doi:10.3390/ antiox10081299.
  • Jang S, et al. Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal. 2017; 27: 57–69. doi: 10.1089/ars.2016.6635.
  • Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015; 78: 100–106. doi: 10.1016/j.yjmcc.2014.09.023.
  • Matsushima S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia- inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α Circ Res. 2013; 112: 1135–1149. doi: 10.1161/CIRCRESAHA.111.300171.
  • Zhu N, et al. Berberine protects against simulated ischemia/reperfusion injury-induced H9C2 cardiomyocytes apoptosis in vitro and myocardial ischemia/reperfusion-induced apoptosis in vivo by regulating the mitophagy-mediated HIF-1α/BNIP3 pathway. Front Pharmacol. 2020;11:367. doi: 10.3389/fphar.2020.00367.
  • Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther. 2012; 136: 69–81. doi: 10.1016/j.pharmthera.2012.07.005.
  • Kit OI, et al. The effect of chronic neuropathic pain on the course of the malignant process of B16/ F10 melanoma in male mice. News of higher educational institutions. North Caucasian region. Series: Natural Sciences. 2019; 1(201): 106-11. [in Russian]
  • Egorova MV, Afanasiev SA. Isolation of mitochondria from cells and tissues of animals and humans: Modern methodological techniques. Siberian Medical Journal. 2011; 26 (1-1): 22-28. [in Russian]
  • Frantsiyants EM, et al. Effect of urokinase gene knockout on melanoma growth in experiment. Siberian scientific medical journal. 2019; 39(4): 62-70.
  • Kit OI, et al. A method for the abolition of genetically determined inhibition of the growth of a malignant tumor in the experiment. Patent for invention RU 2718671 C1, 04/13/2020. Application No. 2019124739 dated 08/01/2019. [in Russian]
  • Frantsiyants EM. Lipid peroxidation in the pathogenesis of tumor disease. Abstract dis. ... doctors of biological sciences / Rostov. scientific research. oncol. in-t. Rostov-on-Don, 1997. [in Russian]
  • Neskubina I.V. The role of nitric oxide derivatives in the formation of endogenous intoxication in cancer patients with different prevalence of the malignant process and with some methods of autobiochemotherapy. Thesis for the degree of Candidate of Biological Sciences / Federal State Institution “Rostov Research Institute of Oncology”. Rostov-on-Don, 2008. [in Russian]
  • Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(23), 5839–5848. doi:10.1073/pnas.1804932115.
  • Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer science. 2021; 112(10): 3945–3952. doi:10.1111/cas.15068.
  • Hausenloy DJ, et al. Novel targets and future strategies for acute cardioprotection: Position paper of the european society of cardiology working group on cellular biology of the heart. Cardiovasc Res. 2017; 113: 564–585. doi: 10.1093/cvr/cvx049.
  • Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev Pharmacol Toxicol. 2017; 57: 535–565. doi: 10.1146/annurev-pharmtox-010715-103335.
  • Jang S, et al. Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal. 2017; 27: 57–69. doi: 10.1089/ars.2016.6635.
  • Hinch EC, et al. Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiquitin proteosome system in the cachectic heart muscle of nude mice. Journal of cachexia, sarcopenia and muscle. 2013; 4(4): 287–293. doi 10.1007/s13539-013-0116-8.
  • Koene RJ, et al. Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation. 2016; 133(11): 1104–1114. doi 10.1161/CIRCULATIONAHA.115.020406.
  • Ligia Akemi Kiyuna, et al. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med. 2018; 129: 155–168. doi: 10.1016/j.freeradbiomed. 2018.09.019.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009; 27: 120–139. doi: 10.1080/10590500902885684.
  • Chowdhury A, et al. Defective mitochondrial cardiolipin remodeling dampens HIF-1α expression in hypoxia. Cell Rep. 2018; 25: 561–570. doi: 10.1016/j.celrep.2018.09.057.
  • Nanayakkara G, et al. Cardioprotective HIF- 1α-frataxin signaling against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2015; 309: H867–H879. doi: 10.1152/ajpheart.00875.2014.
  • Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208–215. doi: 10.1016/j.redox.2017.02.012.
  • Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther. 2012; 136: 69–81. doi: 10.1016/j.pharmthera.2012.07.005.
  • Cadenas S. ROS and redox signaling in myocardial isch-emia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018; 117: 76–89. doi: 10.1016/j.freeradbiomed.2018.01.024.
  • Zheng J, et al. HIF1α in myocardial ischemiareperfusion injury (Review). Mol Med Rep. 2021; 23(5): 352. doi: 10.3892/mmr.2021.11991.
Еще
Отчет