Механические свойства армированных полимерных стержней при различных видах напряженно-деформированного состояния
Автор: Аксенкин В.И., Лазарев Ю.Г., Усанова К.Ю., Вафаева Х.М., Васюткин Е.С.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования являются армированные полимерные стержни периодического профиля диаметром 4 мм, 6 мм, 8 мм, 10 мм и 12 мм, изготовленные методом пултрузии-вытягивания стекловолокна, пропитанного жидким связующим на основе эпоксидной смолы, через круглую фильеру. Целью данной работы является исследование физико-механических характеристик стержней из стеклопластика, используемых для армирования железобетонных конструкций.
Композит из стекловолокна, полимер, армированный стекловолокном, прочность, модуль упругости, бетон, арматура
Короткий адрес: https://sciup.org/143182723
IDR: 143182723 | DOI: 10.4123/CUBS.109.31
Список литературы Механические свойства армированных полимерных стержней при различных видах напряженно-деформированного состояния
- Anisimov, A. V., Tryasunov, V.S., Shultceva, E.L., Sokolov, J. V. and Mudry, F. V. (2018) Epoxy Vinyl Ester Binder for Fire-Resistant Marine Fiberglass Plastics. Inorganic Materials: Applied Research, Pleiades Publishing, 9, 1116–1122. https://doi.org/10.1134/S2075113318060011.
- Gopanna, A., Rajan, K.P., Thomas, S.P. and Chavali, M. (2019) Polyethylene and Polypropylene Matrix Composites for Biomedical Applications. Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Elsevier, 175–216. https://doi.org/10.1016/B978-0-12-816874-5.00006-2.
- Alexandrov А.V., Balagurov V.B., Lisichkin S.Е., Rubin О.D. (2016) New Technology of HES Repair Using Reinforcement with Composite Materials. Izvestiya B.E. Vedeneev VNIIG, 280, 3-9. Https://Www.Elibrary.Ru/Item.Asp?Id=26211163.
- Gerfanova O. A., Osipov P. V., Frolov K. E. (2019) Civil Structures External Reinforcement System with Polymer Composites Based on Carbon Fibers for Hydrotechnical Construction. Izvestiya B.E. Vedeneev VNIIG, 291, 36-46. Https://Www.Elibrary.Ru/Item.Asp?Id=37641008.
- Kavkazskiy, V.N., Kirsanova, T.A., Usanova, K.I. and Vafaeva, K.M. (2023) Drainage Bridge Trays Made of Glass Fiber Reinforced Polymer: Physical, Mechanical and Operational Properties. Строительство уникальных зданий и сооружений, 110, 10919–10919. https://doi.org/10.4123/CUBS.109.19.
- Vasyutkin E.S, Galushko, M.M., Lazarev, Yu.G., Dzhalalov, A.I. and Burin, D.L. (2022) Strength Calculation of a Suspended Bridge Tray from Polymer Composite Materials [Prochnostnoj Raschyot Podvesnogo Mostovogo Lotka Iz Polimernyh Kompozicionnyh Materialov]. Route navigator [Putevoj navigator], 51, 50–53. https://www.elibrary.ru/item.asp?id=48698591.
- Pinyazhin, S., Ivanov, A., Yashnov, A. and Ermolov, Y. (2022) Structural Solutions of the Superstructure with Elements Made of Polymer Composite Material. AIP Conference Proceedings, American Institute of Physics Inc., 2647. https://doi.org/10.1063/5.0118648/16233660/060037_1_ONLINE.PDF.
- Sharma, H., Kumar, A., Rana, S., Sahoo, N.G., Jamil, M., Kumar, R., Sharma, S., Li, C., Kumar, A., Eldin, S.M. and Abbas, M. (2023) Critical Review on Advancements on the Fiber-Reinforced Composites: Role of Fiber/Matrix Modification on the Performance of the Fibrous Composites. Journal of Materials Research and Technology, Elsevier, 26, 2975–3002. https://doi.org/10.1016/J.JMRT.2023.08.036.
- Wu, G., Ren, Y., Du, J., Wang, H. and Zhang, X. (2023) Mechanical Properties and Failure Mechanism Analysis of Basalt-Glass Fibers Hybrid FRP Composite Bars. Case Studies in Construction Materials, Elsevier, 19, e02391. https://doi.org/10.1016/J.CSCM.2023.E02391.
- Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. and Sanjayan, J. (2023) Applications of Natural and Synthetic Fiber Reinforced Polymer in Infrastructure: A Suitability Assessment. Journal of Building Engineering, Elsevier, 66, 105835. https://doi.org/10.1016/J.JOBE.2023.105835.
- Karim, M.A., Abdullah, M.Z., Deifalla, A.F., Azab, M. and Waqar, A. (2023) An Assessment of the Processing Parameters and Application of Fibre-Reinforced Polymers (FRPs) in the Petroleum and Natural Gas Industries: A Review. Results in Engineering, Elsevier, 18, 101091. https://doi.org/10.1016/J.RINENG.2023.101091.
- Ding, S., Zou, B., Zhuang, Y., Wang, X., Feng, Z. and Liu, Q. (2023) Effect of Printing Design and Forming Thermal Environment on Pseudo-Ductile Behavior of Continuous Carbon/Glass Fibers Reinforced Nylon Composites. Composite Structures, Elsevier, 322, 117362. https://doi.org/10.1016/J.COMPSTRUCT.2023.117362.
- Vatin, N., Ilizar, M. and Nurmukhametov, R. (2020) Composite Helical Micro Pile’s Bearing Capacity. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 890. https://doi.org/10.1088/1757-899X/890/1/012037.
- Belyi, A.A., and Artem’ev, V.S. (2019) Pipes: From Reed to Fiberglass [Truby: Ot Trostnika Do Stekloplastika]. Route navigator [Putevoj navigator], 38(64), 32–37. https://www.elibrary.ru/item.asp?id=37285709.
- Fang, Y., Chen, P., Huo, R., Liang, Y., Wang, L. and Liu, W. (2018) Hygrothermal Ageing of Polymeric Sandwich Structures Used in Structural Engineering. Construction and Building Materials, Elsevier, 165, 812–824. https://doi.org/10.1016/J.CONBUILDMAT.2018.01.072.
- Yuan, G., Bai, Y., Jia, Z., Lau, K. tak and Hung, P. yan. (2019) Structural Deformation Performance of Glass Fiber Reinforced Polymer Composite Beam Actuated by Embedded Indented SMA Wires. Composites Part B: Engineering, Elsevier, 159, 284–291. https://doi.org/10.1016/J.COMPOSITESB.2018.09.101.
- Bekker, А.Т. and Umansky, А.М. (2016) Application of Basalt-Plastic Reinforcement in the Structures of Offshore Hydroengineering Constructions. Izvestiya B.E. Vedeneev VNIIG, 282, 61–75. https://www.elibrary.ru/item.asp?id=27638901.
- Morales, C.N., Claure, G., Emparanza, A.R. and Nanni, A. (2021) Durability of GFRP Reinforcing Bars in Seawater Concrete. Construction and Building Materials, Elsevier, 270, 121492. https://doi.org/10.1016/J.CONBUILDMAT.2020.121492.
- Jabbar, S.A.A. and Farid, S.B.H. (2018) Replacement of Steel Rebars by GFRP Rebars in the Concrete Structures. Karbala International Journal of Modern Science, No longer published by Elsevier, 4, 216–227. https://doi.org/10.1016/J.KIJOMS.2018.02.002.
- Korotkiy, A.S. and Ivanov, A.N. (2022) Unification of Superstructures Having Load-Bearing Elements Made of Fiber-Reinforced Polymer Composites. Vestnik MGSU, Moscow State University of Civil Engineering, 352–364. https://doi.org/10.22227/1997-0935.2022.3.352-364.
- Begunova, N. V and Vozmishchev, V.N. (2017) Comparative Evaluation of Strength, Rigidity and Crack Resistance of Concrete Structures Reinforced with Fiberglass Rebar and Steel Rebar. Intellekt. Sist. Proizv., Kalashnikov Izhevsk State Technical University, 15, 69. https://doi.org/10.22213/2410-9304-2017-4-69-74.
- Wu, W., He, X., Yang, W., Alam, M.S., Wei, B. and He, J. (2023) Degradation Factors and Microstructure Degradation Characteristics of B/GFRP Bars in Harsh Environment: A Review. Construction and Building Materials, Elsevier, 366, 130246. https://doi.org/10.1016/J.CONBUILDMAT.2022.130246.
- Khan, Q., Sheikh, M. and Hadi, M. (2015) Tension and Compression Testing of Fibre Reinforced Polymer (FRP) Bars. Faculty of Engineering and Information Sciences - Papers: Part A. https://ro.uow.edu.au/eispapers/5008.
- Zhou, Z., Meng, L., Zeng, F., Guan, S., Sun, J. and Tafsirojjaman, T. (2023) Experimental Study and Discrete Analysis of Compressive Properties of Glass Fiber-Reinforced Polymer (GFRP) Bars. Polymers 2023, Vol. 15, Page 2651, Multidisciplinary Digital Publishing Institute, 15, 2651. https://doi.org/10.3390/POLYM15122651.
- Reichenbach, S., Preinstorfer, P., Hammerl, M. and Kromoser, B. (2021) A Review on Embedded Fibre-Reinforced Polymer Reinforcement in Structural Concrete in Europe. Construction and Building Materials, Elsevier, 307, 124946. https://doi.org/10.1016/J.CONBUILDMAT.2021.124946.
- Mazzuca, P., Firmo, J.P., Correia, J.R. and Castilho, E. (2022) Influence of Elevated Temperatures on the Mechanical Properties of Glass Fibre Reinforced Polymer Laminates Produced by Vacuum Infusion. Construction and Building Materials, Elsevier, 345, 128340. https://doi.org/10.1016/J.CONBUILDMAT.2022.128340.
- Begunova, N. V. and Vozmishchev, V.N. (2021) Temperature Distribution Based on Fire Resistance Tests in Fiberglass Reinforced Concrete Beams. Вестник гражданских инженеров, Saint Petersburg State University of Architecture and Civil Engineering (SPSUACE), 18, 54–63. https://doi.org/10.23968/1999-5571-2021-18-3-54-63.
- Yang, Y., Xian, G., Li, H. and Sui, L. (2015) Thermal Aging of an Anhydride-Cured Epoxy Resin. Polymer Degradation and Stability, Elsevier, 118, 111–119. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2015.04.017.
- Al-Salloum, Y.A., El-Gamal, S., Almusallam, T.H., Alsayed, S.H. and Aqel, M. (2013) Effect of Harsh Environmental Conditions on the Tensile Properties of GFRP Bars. Composites Part B: Engineering, Elsevier, 45, 835–844. https://doi.org/10.1016/J.COMPOSITESB.2012.05.004.
- De Araújo Moura, R.C., Ribeiro, D.V. and Lopes Lima, P.R. (2021) Mechanical Damage Assessment of GFRP Rebars with Different Resins Due to Hydrothermal Aging. Materials Research, ABM, ABC, ABPol, 24, e20210172. https://doi.org/10.1590/1980-5373-MR-2021-0172.
- Ermoshin, N. and Ismailov, A. (2021) The Qualimetric Method for Optimising the Selection of Components for Making High Quality Asphalt-Concrete Mixes. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 141, 339–350. https://doi.org/10.1007/978-3-030-67654-4_37.
- Baran, I. (2023) Introduction to Pultrusion. Pultrusion, Elsevier, 1–16. https://doi.org/10.1016/B978-0-32-391613-4.00002-1.
- Pei, Z. and Wei, Y. (2022) Prediction of the Bond Strength of FRP-to-Concrete under Direct Tension by ACO-Based ANFIS Approach. Composite Structures, Elsevier, 282, 115070. https://doi.org/10.1016/J.COMPSTRUCT.2021.115070.
- Bazli, M., Ashrafi, H. and Oskouei, A.V. (2017) Experiments and Probabilistic Models of Bond Strength between GFRP Bar and Different Types of Concrete under Aggressive Environments. Construction and Building Materials, Elsevier, 148, 429–443. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.046.
- Spagnuolo, S., Rinaldi, Z., Donnini, J. and Nanni, A. (2021) Physical, Mechanical and Durability Properties of GFRP Bars with Modified Acrylic Resin (Modar) Matrix. Composite Structures, Elsevier, 262, 113557. https://doi.org/10.1016/J.COMPSTRUCT.2021.113557.
- Zima, B. and Krajewski, M. (2022) The Vibration-Based Assessment of the Influence of Elevated Temperature on the Condition of Concrete Beams with Pultruded GFRP Reinforcement. Composite Structures, Elsevier, 282, 115040. https://doi.org/10.1016/J.COMPSTRUCT.2021.115040.
- Robert, M., Cousin, P. and Benmokrane, B. (2009) Behaviour of GFRP Reinforcing Bars Subjected to Extreme Temperatures. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 3, 1587–1596. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000092.
- Ashrafi, H., Bazli, M., Jafari, A. and Ozbakkaloglu, T. (2020) Tensile Properties of GFRP Laminates after Exposure to Elevated Temperatures: Effect of Fiber Configuration, Sample Thickness, and Time of Exposure. Composite Structures, Elsevier, 238, 111971. https://doi.org/10.1016/J.COMPSTRUCT.2020.111971.
- Kiran, T., Anand, N., Mathews, M.E., Kanagaraj, B., Andrushia, A.D., Lubloy, E. and G, J. (2022) Investigation on Improving the Residual Mechanical Properties of Reinforcement Steel and Bond Strength of Concrete Exposed to Elevated Temperature. Case Studies in Construction Materials, Elsevier, 16, e01128. https://doi.org/10.1016/J.CSCM.2022.E01128.
- Jin, L., Liu, K., Zhang, R., Yu, W. and Du, X. (2023) Bond Behavior between Steel Bar and Concrete Considering Cryogenic Temperatures and Confinement. Case Studies in Construction Materials, Elsevier, 18, e01856. https://doi.org/10.1016/J.CSCM.2023.E01856.
- Silvestru, V.A., Ariza, I. and Taras, A. (2023) Structural Behaviour of Point-by-Point Wire Arc Additively Manufactured Steel Bars under Compressive Loading. Journal of Constructional Steel Research, Elsevier, 207, 107982. https://doi.org/10.1016/J.JCSR.2023.107982.
- Cos-Gayón López, F., Benlloch Marco, J. and Calvet Rodríguez, V. (2021) Influence of High Temperatures on the Bond between Carbon Fibre-Reinforced Polymer Bars and Concrete. Construction and Building Materials, Elsevier, 309, 124967. https://doi.org/10.1016/J.CONBUILDMAT.2021.124967.