Механические свойства силиконовых маммапротезов
Автор: Шадрин В.В., Плаксин С.А., Платунова В.А.
Журнал: Российский журнал биомеханики @journal-biomech
Статья в выпуске: 4 (106) т.28, 2024 года.
Бесплатный доступ
Увеличение молочных желез с помощью силиконовых имплантатов относится к одним из наиболее часто выполняемых эстетических операций. Основной причиной повторных операций и удаления имплантатов является его разрыв. Целью исследования является изучение изменения прочности и деформативности оболочки имплантатов молочных желез, приводящих к их разрыву в зависимости от условий механического воздействия на них. В работе применялись методы, используемые в механике сплошных сред при исследовании эластомеров. Проведены эксперименты на циклическое растяжение и на циклическое растяжение с нарастающей амплитудой оболочки имплантата. Испытания проводились на оболочке силиконовых грудных протезов производства Eurosilicone, Mentor и Motiva. Начальные участки кривых растяжения до 200 % показаны для оболочек имплантатов Mentor спустя 8 лет использования в организме, Eurosilicone – 8 лет и Motiva – 2 года. Все эксперименты сравнивались с кривой растяжения оболочки не использованного (контрольного) имплантата. Циклическое растяжение показало, что после первого растяжения до заданной деформации оболочка имплантата размягчается, и следующая кривая растяжения проходит гораздо ниже кривой первого растяжения. При деформации, большей предыдущего растяжения, кривая растяжения вновь выходит на начальную кривую нерастянутого образца. При наличии микроповреждений оболочки грудных протезов размягчаются (эффект Маллинза), и кривые проходят ниже кривой контрольного испытания. Показано, что прочность протеза падает со временем из-за накопления микроповреждений при систематической циклической деформации в процессе его использования в пределах 100–150 %. При больших деформациях оболочек силиконовых имплантатов прочность протезов существенно снижается, и разрыв может произойти гораздо раньше их срока годности.
Грудные имплантаты, оболочки имплантатов, напряжение, деформация, прочность, накопление повреждений, циклическое испытание
Короткий адрес: https://sciup.org/146283010
IDR: 146283010 | DOI: 10.15593/RZhBiomeh/2024.4.17
Список литературы Механические свойства силиконовых маммапротезов
- Aesthetic plastic surgery national databank statistics 2022. // Aesthet Surg J. – 2023. – Vol. 43, no. 2. – 1–19.
- Breast Implant illness: Is it causally related to breast implants? / J.W.C. Tervaert, Y. Shoenfeld, C. Cruciani, C. Scarpa, F. Bassetto // Autoimmun Rev. – 2024. – Vol. 23, no. 1. – P. 103448
- Swezey, E. Breast implant rupture / E. Swezey, R. Shikhman, R. Moufarrege. – Treasure Island (FL): StatPearls Publishing. – 2023. MID: 29083733.
- Trends in surgical and nonsurgical aesthetic procedures: A 14-year analysis of the international society of aesthetic plastic surgery-ISAPS / L. Triana, H.R.M. Palacios, G. Campilgio, E. Liscano // Plast Reconstr Surg. – 2024. – Vol. 48, no. 20. – P. 4217–4227.
- Memory gel breast implants: final safety and efficacy results after 10 years of follow-up / D.A. Caplin, M.B. Calobrace, R.N. Wixtrom, M.M. Estes, J.W. Canady // Plastic and Re-constructive Surgery. – 2021. – Vol. 147, no. 3. – P. 556–566.
- Safety and efficacy of the sientra silicone gel round and shaped breast implants: 6-Year Results of the U.S. PostaP.roval Study / M.B. Calobrace, M.R. Schwartz, D.L. Kaufman, A.E. Gordon, R. Cohen, J. Harrington, D. Dajles, K. Zeidler // Plastic and Reconstructive Surgery. – 2024. – Vol. 154, no. 1. – P. 44e–56e.
- Spear, S.L. Natrelle round silicone breast implants: Core study results at 10 years / S.L. Spear, D.K. Murphy // Plast Reconstr Surg. – 2014. – Vol. 133, no. 6. – P. 1354–1361
- Ten-year core study data for sientra’s food and drug admin-istration-aproved round and shaped breast implants with co-hesive silicone gel / W.G. Stevens, M.B. Calobrace, K. Alizadeh, K.R. Zeidler, J.L. Harrington, R.C. d’Incelli // Plast Reconstr Surg. – 2018. – Vol. 141. – P. 7S–19S.
- Spectrum of chronic complications related to silicone leakage and migration / A.J. Ryu, K.N. Glazebrook, N. Samreen, P.R. Bauer, E.S. Yi, J.H. Ryu // Am. J. Med. – 2018. – Vol. 131, no. 11. – P. 1383–1386.
- Handel, N. Breast implant rupture: causes, incidence, clinical impact, and management / N. Handel, M.E. Garcia, R. Wixtrom // Plast Reconstr Surg. – 2013. – Vol. 132, no. 5. – P. 1128–1137.
- Van Boeckel, V. A case of a giant siliconoma mimicking lo-calized breast cancer / V. Van Boeckel, D. Danthine, J.L. Nizet // J. Belg Soc Radio. – 2024. – Vol. 108, no. 1. – P. 74.
- Management of contralateral breast and axillary nodes sili-cone migration after implant rupture / L. Elahi, M.G. Meuwly, J.Y. Meuwly, W. Raffoul, N. Koch // Plast Reconstr Surg Glob Open. – 2022. – Vol. 10, no. 5. – P. e4290.
- Silicone cervical lymphadenopathy: a rare complication after breast augmentation / C.T. Avgeri, G. Sideris, I. Margaris, L. Tapponi // Cureus. – 2023. – Vol. 15, no. 12. – P. e50453.
- Clinicopathologic features and prognostic impact of lymph node involvement in patients with breast implant-associated anaplastic large cell lymphoma / M.C. Ferrufino-Schmidt, L.J. Medeiros, H. Liu, M.W. Clemens, K.K. Hunt, C. Laurent, J. Lofts, M.B. Amin, S.M. Chai, A. Morine, A.D. Napoli, A. Dogan, V. Parkash, G. Bhagat, D. Tritz, A.E. Quesada, S. Pina-Oviedo, Q. Hu, F.J. Garcia-Gomez, J.J. Borrero, P. Horna, B. Thakral, M. Narbaitz, R.C. Hughes 3rd, L.J. Yang, J.R. Fromm, D. Wu, D. Zhang, A.R. Sohani, J. Hunt, I.U. Vadlamani, E.A. Morgan, J.A. Ferry, R. Szigeti, J.C. Tardio, R. Granados, S. Dertinger, F.A. Offner, A. Pircher, J. Hosry, K.H. Young, R.N. Miranda // American Journal of Surgical Pathology. – 2018. – Vol. 42, no. 3. – P. 295–305.
- Silicone lymphadenopathy: an unexpected cause of neck lumps / E. Omakobia, G. Porter, S. Armstrong, K. Denton // J. Laryngology & Otology. – 2012. – Vol. 126. – P. 970–973.
- Borghol, K. Silicone granuloma from ruptured breast implants as a cause of cervical lymphadenopathy / K. Borghol, G. Gallagher, B.L. Skelly // Ann R Coll Surg Engl. – 2016. – Vol. 98, no. 7. – P. e118–e120.
- Prevalence, clinical characteristics, and management of sili-cone lymphadenopathy: A systematic review of the literature / P.T.C. Pelegrina, A. Desai, K.K. Tadisina, D.P. Singh, S.B. Kesmodel, K.E. Rojas, J.R. Mella-Catinchi // J Plast Re-constr Aesthet Surg. – 2024. – Vol. 90. – P. 76–87.
- Thoracic outlet syndrome following breast implant rupture/ R. Mistry, Y. Caplash, P. Giri, D. Kearney, M. Wagstaff // Plast Reconstr Surg Glob Open. – 2015. – Vol 3, no. 3. – P. e331.
- Yin, S. Reasons for silicone breast implant removal after long-term implantation in chinese patients without complications: A questionnaire-based study / S. Yin, B. Li // Aesth Plast Surg. – 2004. – Vol. 48. – P. 4381–4387.
- Brown, T. Testing mechanical properties of silicone gel-filled breast implants and their degradation / T. Brown, F. Harvie, D. Kluess // Aesth Plast Surg. – 2024. – Vol. 48. – P. 3362–3369.
- US Food and Drug Administration, Center for Devices and Radiological Health. Breast implants – certain labeling rec-ommendations to improve patient communication. Guidance for industry and Food and Drug Administration staff. [Элек-тронный ресурс]. – URL: https://www.fda.gov/me-dia/131885/download (дата обращения: 01.04.2024).
- On the cyclic deformation behavior, fracture properties and cytotoxicity of silicone-based elastomers for biomedical ap-plications / R. Bernardi, D.S. Hopf, A. Ferrari, A.E. Ehret, E. Mazza // Polymer Testing. – 2017. – Vol. 60. – P. 117–123.
- On the large strain deformation behavior of silicone-based elastomers for biomedical applications / R.H. Bernardi, A. Ferrari, A.E. Ehret, E. Mazza // Polymer Testing. – 2017. – Vol. 58. – P. 189–198.
- Strength of silicone breast implants / J.W. Phillips, D.L. de Camara, M.D. Lockwood, M.S. Grebner // Plastic and Reconstructive Surgery. – 1996. – Vol. 97, no. 6. – P. 1215–1225.
- Silicone gel breast implant failure: evaluation of properties of shells and gels for explanted prostheses and meta-analysis of literature rupture data / J.S. Marotta, E.P. Goldberg, M.B. Habal, D.P. Amery, P.J. Martin, D.J. Urbaniak, C.W. Widenhouse // Ann Plast Surg. – 2002. – Vol. 49, no. 3. – P. 227–242.
- Failure of silicone gel breast implants: Is the mechanical weakening due to shell swelling a significant cause of pros-theses rupture? / S. Necchi, D. Molina, S. Turri, F. Rossetto, M. Rietjens, G. Pennati // Journal of the Mechanical Behavior of Biomedical Materials. – 2011. – Vol. 4, no. 8. – P. 2002–2008.
- Kononetz, O.A. Modern problems of aesthetic mammoplasty / O.A. Kononetz, V.A. Vissarionov, E.I. Alekseeva // Ann Plast Reconstr Aesth Surg. – 2013. – Vol. 2. – P. 53–57.
- On the safety of implanted breast prostheses in accidental im-pacts / G. Janszen, M. Arnoldi, V. Vinci, M. Klinger, L. Di Landro // Materials. – 2023. – Vol. 16. – P. 4807.
- Zambacos, G.J. Silicone lymphadenopathy after breast aug-mentation: case reports, review of the literature, and current thoughts / G.J. Zambacos, C. Molnar, A.D. Mandrekas // Aes-thetic Plast Surg. – 2013. – Vol. 37, no. 2. – P. 278–89.
- Quaba, O. PIP silicone breast implants: Rupture rates based on the explantation of 676 implants in a single surgeon series / O. Quaba, A. Quaba // J. Plast Reconstr Aesthet Surg. – 2013. – Vol. 66, no. 9. – P. 1182–1187.
- Greco, C. The poly implant prothèse breast prostheses scan-dal: embodied risk and social suffering / C. Greco // Soc Sci Med. – 2015. – Vol. 147. – P. 150–157.
- PIP breast implants: rupture rate and correlation with breast cancer / M. Moschetta, M. Telegrafo, I. Cornacchia, L. Vincenti, V. Ranieri, A. Cirili, L. Rella, A.I. Ianora, G. Angelelli // G Chir. 2014. – Vol. 35, no. 11–12. – P. 274–278.
- Mechanical performance of poly implant prosthesis (pip) breast implants: A comparative study / N.A. Ramião, P.A. Martins, M.D. Barroso, D.C. Santos, F.B. Pereira, A.A. Fernandes // Aesthetic Plast Surg. – 2017. – Vol. 41, no. 2. – P. 250–264.
- Yildirimer, A.M. Surface and mechanical analysis of ex-planted poly implant prosthèse silicone breast implants / A.M. Yildirimer, P.E.B. Seifalian // British Journal of Sur-gery. – 2013. – Vol. 100, no. 6. – P. 761–767.
- Changes in mechanical properties of breast implants depend-ing on the time they remain in the body / S.A. Plaksin, D.N. Ponomarev, V.V. Shadrin, I.A. Osorgina // Theses of the XII National Congress named after N.O. Milanov "Plastic sur-gery, aesthetic medicine and cosmetology". – 2023. – P. 74–75.
- Drozdov, A.D. Stress-strain relations in finite viscoelastoplas-ticity of rigid-rod networks: applications to the Mullins effect / A.D. Drozdov, A. Dorfmann // Continuum Mech. Therm. – 2001. – Vol. 13. – P. 183–205.
- A theory of network alteration for the Mullins effect / G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier, P. Fort // J. Mech. Phy. Solids. – 2002. – Vol. 50. – P. 2011–2028.
- Shariff, M. An anisotropic model of the Mullins effect / M. Shariff // J. Engineering Mathematics. – 2007. – Vol. 56, no. 4. – P. 415–435.
- Ehret, A. Modeling of anisotropic softening phenomena: Ap-plication to soft biological tissues / A. Ehret, M. Itskov // Int. J. Plasticity. – 2009. – Vol. 25. – P. 901–919.
- Dargazany, R. A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers / R. Dargazany, M. Itskov // International Journal of Solids and Structures. – 2009. – Vol. 46. – P. 2967–2977.
- Marckmann, G. Comparison of hyperelastic models for rub-ber-like materials / G. Marckmann, E. Verron // Rubber Chem. Technol. – 2006. – Vol. 79, no. 5. – P. 835–858.
- Diani, J. Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material / J. Diani, M. Brieu, P. Gilormini // International Journal of Solids and Structures. – 2006. – Vol. 43. – P. 3044–3056.
- Wang, S. Experimental characterization and continuum mod-eling of inelasticity in filled rubber-like materials / S. Wang, S.A. Chester // International Journal of Solids and Structures. – 2018. – Vol. 136–137. – P. 125–136.
- Netzker, C. An andochronic plasticity formulation for filled rubber / C. Netzker, D. Husnu, M. Kaliske // International Journal of Solids and Structures. – 2010. – Vol. 47. – P. 2371–2379.
- Gouhier, F. A comparison of finite strain viscoelastic models based on the multiplicative decomposition / F. Gouhier, J. Diani // European Journal of Mechanics – A/Solids. – 2024. – Vol. 108. – P. 105424.
- Oman, S. Observation of the relation between uniaxial creep and stress relaxation of filled rubber / S. Oman, Nagode M. // J. Materials & Design. – 2014. – Vol. 60. – P. 451–457.
- Reese, S. A micromechanically motivated material model for the thermo-viscoelastic material behaviour of rubber-like pol-ymers / S. Reese // International Journal of Plasticity. – 2003. – Vol. 19. – P. 909–940.
- Klüppel, M. The role of disorder in filler reinforcement of elastomers on various length scales / M. Klüppel // Adv. Polym. Sci. – 2003. – Vol. 164. – P. 1–86.
- Diani, J. A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy / J. Diani, M. Brieu, J.M. Vacherand // European Journal of Mechanics – A/Solids. – 2006. – Vol. 25, no. 3. – P. 483–496.
- Stress-induced crystallization and reinforcement in filled nat-ural rubbers: H-2 NMR study / J. Rault, J. Marchal, P. Judeinstein, P.A. Albouy // J. Macromolecules. – 2006. – Vol. 39, no.24. – P. 8356–8368.
- On the experimental identification of equilibrium relations and the separation of inelastic effects in soft biological tissues / F. Bogoni, M.P. Wollner, A. Gerhard, G.A. Holzapfel // J. Mech. Phys. Sol. – 2024. – Vol. 193. – P. 105868.
- Influence of the Mullins effect on the stress–strain state of de-sign at the example of calculation of deformation field in tyre / A.K. Sokolov, A.L. Svistkov, V.V. Shadrin, V.N. Terpugov // International Journal of Non-Linear Mechanics. – 2018. – Vol. 104. – P. 67–74.
- Diani, J. Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material / J. Diani, М. Brieu, P. Gilormini // International Journal of Solids and Structures. – 2006. – Vol. 43. – P. 3044–3056.
- Mokhireva, K.A. A new approach to describe the elastic be-havior of filled rubber-like materials under complex uniaxial loading / K.A. Mokhireva, A.L. Svistkov // International Jour-nal of Solids and Structures. – 2020. – Vol. 202. – P. 816–821.
- Peculiarities of using dumbbell specimens made of elasto-meric materials subject to finite deformation in complex load-ing tests / V.V. Shadrin, A.L. Svistkov, K.A. Mokhireva, O.K. Garishin // J. Letters on Materials. – 2023. – Vol. 13, no. 1. – P. 56–61.
- Shadrin, V.V. Recovery of the mechanical properties of rub-ber under thermal treatment / V.V. Shadrin // Polymer Science Ser. B. – 2005. – Vol. 47, no. 7–8. – P. 220–222