Механическое поведение материала из никелида титана при растяжении и оценка биомеханической совместимости
Автор: Марченко Е.С., Козулин А.А., Топольницкий Е.Б., Шефер Н.А., Ветрова А.В., Ковалва М.А.
Журнал: Российский журнал биомеханики @journal-biomech
Статья в выпуске: 2 (104) т.28, 2024 года.
Бесплатный доступ
В работе исследовали особенности деформационного поведения металлотрикотажа, связанного из тонкой проволоки из сплава на основе TiNi , а также была проведена экспериментальная оценка его биологической совместимости. Полученные экспериментальные деформационные диаграммы напряжение-деформация, полностью соответствуют типовым диаграммам растяжения сверхэластичных сплавов TiNi с мартенситным переходом. Полученные нелинейные зависимости растяжения металлотрикотажа, связанноого из проволоки TiNi реологически подобны гиперупругим материалам и отличны от полученных диаграмм растяжения исходной проволоки. Обнаружено, что напряженно-связанная конструкция трикотажа ограничивает проявление эффекта сверхэластичности, свойственного проволоке. Показано, что предел прочности трикотажа значительно ниже предела прочности проволоки. Методами численного моделирования показано сложно-напряженное состояние при деформировании, что приводит к неоднородности распределения напряжений в конструкции металлотрикотажа и локализации их максимальных значений в области контакта, тем самым подтверждена гипотеза о подавлении сверхэластичности ввиду конструктивных особенностей. Анализ распределения напряжений в материале петель показал, что растяжение в интервале физиологических нагрузок не приводит к локальным разрушениям металлотрикотажа из никелида титана. Результаты экспериментального исследования при макроскопической оценке зоны имплантации демонстрировали отсутствие грыжевых дефектов в зоне эндопротезирования, а спаечный процесс зафиксирован только в 3 (15 %) случаях. Зона эндопротезирования отличалась эластичностью, легко поддавалась деформации. Пористая структура TiNi -проволоки, а также биомеханические и биохимические свойства двухслойного металлатрикотажа обеспечивают оптимальную интеграцию эндопротеза в тканях организма и способствуют формированию эластичного каркаса близкого к естественному. Двухслойный трикотаж из TiNi в замещении сложных анатомических структур показал многообещающие результаты, что открывает перспективы для дальнейших клинических исследований.
Никелид титана, проволока, металлотрикотаж, моделирование, эндопротезирование
Короткий адрес: https://sciup.org/146282976
IDR: 146282976 | DOI: 10.15593/RZhBiomeh/2024.2.04
Список литературы Механическое поведение материала из никелида титана при растяжении и оценка биомеханической совместимости
- Repair of orbital post-traumatic wall defects by custom-made tini mesh endografts / V. Shtin, V. Novikov, T. Chekalkin, V. Gunther, E. Marchenko, E. Choynzonov, S.B. Kang, M.J. Chang, J.H. Kang, A. Obrosov // J. Funct. Biomater. - 2019. - Vol. 10, no. 3. - P. 1-9. DOI: 10.3390/jfb10030027.
- Biocompatibility of Porous SHS-TiNi / V. Gunter, Yu. Yasenchuk, S. Gunther, E. Marchenko, M. Yuzhakov // Materials Science Forum. - 2019. - no. 970. - P. 320-327. DOI: 10.4028/www. scientific.net/MSF.970.320.
- Biomimetic approaches for the design and fabrication of bone-tosoft tissue interfaces / C.P. Kruize, S. Panahkhahi, N.E. Putra, P. Diaz-Payno, G. Van Osch, A.A. Zadpoor, M.J. Mirzaali // ACS Biomaterials Science & Engineering. -2023. - no. 9. - P. 3810-3831.
- Superelastic structures: A review on the mechanics and bio-mechanics / H.B. Khaniki, M.H. Ghayesh, R. Chin, A. Marco // International Journal of Non-Linear Mechanics. - 2023. -no. 148. - P. 104275.
- A superelastic model to capture the mechanical behaviour and histo-logical aspects of the soft tissues / K.K. Dwivedi, P. Lakhani, S. Kumar, N. Kumar // Journal of the Mechanical Behavior of Biomedical Materials. - 2021. - no. 126. -P. 105013.
- Особенности изготовления и клинического применения пористых имплантатов из титана для лечения травм и заболеваний позвоночника / М.Ю. Коллеров, Е.А. Давыдов, Е.В. Завгородняя, М.Б. Афонина // Российский журнал биомеханики. - 2022. - Т. 26, № 1. -С. 73-84.
- Engineering aspects of shape memory alloys / T. Duerig, K. Melton, D. Stockel, C. Wayman // Butterworth-Heinemann. -1990. - P. 130-136.
- Эффект размягчения при циклическом растяжении трикотажа из никелида титана / Е.С. Марченко, Ю.Ф. Ясенчук, А.В. Ветрова, С.В. Гюнтер, Г.А. Байгонакова, А.С. Гарин // Механика композиционных материалов и конструкций. - 2021. -Т. 27, № 4. - С. 459-481.
- Клиническое применение металлотрикотажа из никелида титана на основе количественной оценки реологического подобия мягким биологическим тканям / Е.С. Марченко, Ю.Ф. Ясенчук, С.В. Гюнтер, А.А. Козулин, А.В. Ветрова, А.С. Полонянкин, О.А. Фатюшина, А.Н. Вусик // Вопросы реконструктивной и пластической хирургии. - 2022. - Т. 25, № 2. - С. 68-81. DOI 10.52581/18141471/81/07.
- Somuncu, Ö.S. Decellularization concept in regenerative medicine / Ö.S. Somuncu // Cell Biology and Translational Medicine. - 2020. - Vol. 6. - P. 71-85.
- Extracellular matrix scaffolds for tissue engineering and regenerative medicine / S. Yi, F. Ding, L. Gong, X. Gu // Curr. Stem Cell Res. Ther. - 2017. - no. 12. - P. 233-246.
- Novosel, E.C. Vascularization is the key challenge in tissue engineering / E.C. Novosel, C. Kleinhans, P.J. Kluger // Advanced Drug Delivery Reviews. - 2011. - no. 63. -P. 300-311.
- Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration / A. Samadikuchaksaraei, M. Gholipourmalekabadi, E. Erfani Ezadyar, M. Azami, M. Mozafari, B. Johari, S. Kargozar, S. B. Jameie, A. Korourian, A. M. Seifalian // Journal of Biomedical Materials Research Part A. - 2016. - Vol. 104, no. 8. -P. 2001-2011.
- When size matters: Biological response to strontium-and cobalt-substituted bioactive glass particles / S. Kargozar, F. Baino, N. Lotfibakhshaiesh, R.G. Hill, P.B. Milan, S. Hamzehlou, M.T. Joghataei, M. Mozafari // Mat. Today Proc. - 2018. - no. 5. - P. 15768-15775.
- Замещение пострезекционных дефектов перикарда, диафрагмы, грудной стенки сетчатым имплантатом из никелида титана / Е.Б. Топольницкий, Г.Ц. Дамбаев, Н.А. Шефер, В.Н. Ходоренко, Т.И. Фомина, В.Э. Гюнтер // Вопросы реконструктивной и пластической хирургии. -2012. - Т. 15, № 40. - С. 14-21.
- Имплантаты с памятью формы в торакальной хирургии / Г.Ц. Дамбаев, Е.Б. Топольницкий, В.Э. Гюнтер, Н.А. Шефер, В.Н. Ходоренко, Е.Г. Соколович, Т.И. Фомина, В.А. Капитанов, А.А. Жеравин, С.В. Гюнтер, J.H. Kang, Ю.Ф. Ясенчук, J.S. Kim, О.В. Кокорев, Т.Л. Чекалкин, Н.В. Артюхова, М.И. Кафтаранова, Е.С. Марченко, А.В. Проскурин, А.Н. Матюнин, С.Г. Аникеев - Томск: Научно-производственное предприятие «МИЦ», 2016. - 232 с.
- Замещение циркулярных дефектов трахеи лоскутом аутоперикарда в комбинации с никелид-титановой (экспериментальное исследование) / Е.Б. Топольницкий, Г.Ц. Дамбаев, Н.А. Шефер, В.Н. Ходоренко, В.Э. Гюнтер // Вестник новых медицинских технологий. - 2012 - Т. 19, № 3. - С. 97-100.
- Реакция тканей на сетчатый имплантат из никелида титана после замещения пострезекционных дефектов анатомических структур грудной клетки / Е.Б. Топольницкий, Г.Ц. Дамбаев, В.Н. Ходоренко, Т.И. Фомина, Н.А. Шефер, В.Э. Гюнтер // Бюллетень экспериментальной биологии и медицины. - 2012. -Т. 153, № 3. - С. 366-370.
- Obrosov evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors / E. Topolnitskiy, T. Chekalkin, E. Marchenko, Y. Yasenchuk, S.B. Kang, J.H. Kang // J. Funct. Biomater. -2021. - Vol. 12, no. 4 - P. 60.
- Constitutive relationship of fabric rubber composites and its application / X. Xu, G. Wang, H. Yan, X. Yao // Composite Structures. - 2023. - Vol. 304. - P. 116302.
- Numerical modeling of fiber reinforced polymer textile composites for characterizing the mechanical behavior / V. Kaushik, P. Sharma, P. Priyanka, H. Mali // Materialwissenschaft und Werkstofftechnik. - 2022. -Vol. 53, no. 10. - P. 1263-1289.
- Zhao, Z. Advances in mechanical properties of flexible textile composites / Z. Zhao, B. Li, P. Ma // Composite Structures -2023. - No. 303. - P. 116350.
- Study of the knitted TiNi mesh graft in a rabbit cranioplasty model / V.E. Gunther, A. Radkevich, S.B. Kang, T. Chekalkin, E. Marchenko, S. Gunther, A. Pulikov, I. Sinuk, S. Kaunietis, V. Podgorniy, M. Chang, J.H. Kang // Biomedical Physics & Engineering Express. - 2019. - Vol. 5. - P. 027005. DOI: 10.1088/2057-1976/ab0693.
- Численное исследование напряженно-деформированного состояния штифтовых культевых конструкций из диоксида циркония, изготовленных с использованием cad/cam-технологий / М.В. Джалалова, А.Г. Степанов, С.В. Апресян, А.И. Оганян // Российский журнал биомеханики. - 2023. - Т. 27, № 1. - С. 22-30.
- Оценка биомеханических свойств материалов на основе дермы для герниопластики / К.И. Мелконян, Т.В. Русинова, Я.А. Козмай, Е.А. Солоп, О.А. Москалюк, A.С. Асякина, М.М. Манукян, К.Г. Гуревич // Российский журнал биомеханики. - 2023. - № 2. - С. 10-17.
- Перельмутер, М.Н. Концентрация напряжений в костных тканях и винтовых дентальных имплантатах / М.Н. Перельмутер // Российский журнал биомеханики. -2023. - Т. 27, - № 2. - С. 18-29.
- Богар, М.Н. Исследование микроформовки SS316L как материала для биомедицинских применений / М.Н. Богар, О. Кулкарни, Г. Какандикар // Российский журнал биомеханики. - 2023. - Т. 27, № 4. - С. 171-185.
- Теплофизические аспекты обеспечения качества высокопористых имплантатов с ячеистой структурой, полученных методом селективного лазерного плавления / П.Н. Килина, Л.Д. Сиротенко, М.С. Козлов, А.А. Дроздов // Российский журнал биомеханики. - 2023. - Т. 27, № 4. - С. 200-211.
- Биомеханические аспекты радиационной стерилизации композиционного материала "УГЛЕКОН-МЯ" для медицины/ В.Д. Онискив, А.В. Сотин, В.Ю. Столбов, С.М. Никулин, Е.В. Южакова // Российский журнал биомеханики. - 2023. - Т. 27, № 4. - С. 212-219.
- Механические свойства биосовместимых покрытий титан-стекло-углерод для применения в ортопедических имплантатах и деталях для остеосинтеза / С. Чернева, B. Петков, С. Войнарович, А. Алексиев, О. Кислица, О. Масючок // Российский журнал биомеханики. -2023. - Т. 26, № 1. - С. 49-59.
- Lagan, S.D. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue / S.D. Lagan, A. Liber-Knec // Acta of Bioengineering and Biomechanics. - 2017. Vol. 19. - P. 93-102.
- Constitutive relationship of fabric rubber composites and its application / X. Xu, G. Wang, H. Yan, X. Yao // Composite Structures. - 2023. - Vol. 304. - P. 116302.
- Numerical modeling of fiber reinforced polymer textile composites for characterizing the mechanical behavior / V. Kaushik, P. Sharma, P. Priyanka, H. Mali // Materialwissenschaft und Werkstofftechnik. - 2022. -Vol. 53, no. 10. - P. 1263-1289.
- Zhao, Z. Advances in mechanical properties of flexible textile composites / Z. Zhao, B. Li, P. Ma // Composite Structures. -2023. - Vol. 303. - P. 116350.
- On the role of material architecture in the mechanical behavior of knitted textiles / D. Liu, D. Christe, B. Shakibajahromi, C. Knittel, N. Castaneda, D. Breen, G. Dion, A. Kontsos // International Journal of Solids and Structures. - 2017 -Vol. 109. - P. 101-111.
- Softening effects in biological tissues and NiTi knitwear during cyclic loading / Y.F. Yasenchuk, E.S. Marchenko, S.V. Gunter, G.A. Baigonakova, O.V. Kokorev, A.A. Volinsky, E.B. Topolnitsky // Materials - 2021. -Vol. 14 - P. 6256.
- Three dimensional simulation of weft knitted fabric based on surface mode / Y. Li, L. Yang, S. Chen, L. Xu // Comput. Model. Technol. - 2014. - Vol. 18. - P. 52-57.
- Modeling of tensile and bending properties of biaxial weft knitted composites. / O. Demircan, A.R. Torun, T. Kosui, A. Nakai // Sci. Eng. Compos. Mater. - 2015. - Vol. 22. -P. 215-341.
- Simulation of the superelastic behavior of NI-TI SMA belleville washers using ANSYS / P. Silva, A. Carlos, S. Marcelo, S. Neilor // In: 22nd International Congress of Mechanical Engineering (COBEM 2013), Ribeirao Preto, SP, Brazil, 2013.
- Auriccho, F. A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model / F. Auriccho // International Journal of Plasticity. - 2001. - Vol. 17. -P. 971-990.
- Three-dimensional simulation of weft knitted fabric based on surface model / Y. Li, L. Yang, S. Chen, L. Xu // Computer modeling and new technologies. - 2014. - Vol. 18, no. 3. -P. 52-57.
- Ravandi, M. Numerical modeling of mechanical behavior of weft-knitted carbon fiber composites / M. Ravandi, S. Ahlquist, M. Banu // 8th European Conference for Aeronautics and Space Science. - 2019. - P. 1-8.
- Numerical simulation of the mechanical behavior of a weft-knitted carbon fiber composite under tensile loading/ M. Ravandi, A. Moradi, S. Ahlquist, M. Banu // Polymers. -2022. - Vol. 14, no. 3. - P. 451.
- Mohammed, M.A.P. Visco-hyperelastic model for soft rubber-like materials / M.A.P. Mohammed // Sains. Malaysiana. - 2014. - Vol. 43, no. 3 - P.451-457.
- Lekston, Z. Application of superelastic NiTi wires for mandibular distraction / Z. Lekston, J. Drugacz, H. Morawiec // Materials Science and Engeneering - 2004. - Vol. 378. -P. 537.
- Terriault, P. Non-isothermal finite element modeling of a shape memory alloy actuator using ANSYS / P. Terriault, F. Viens, V. Brailovski // Computational Materials Science -2006. - Vol. 36. - P. 397-410.