Механизмы и клиническое значение нефропротективного действия ингибиторов натрий-глюкозного котранспортёра 2 типа

Автор: Пчелин И.Ю., Василькова О.Н., Шишкин А.Н., Байрашева В.К., Худякова Н.В.

Журнал: Juvenis scientia @jscientia

Рубрика: Медицинские науки

Статья в выпуске: 1, 2019 года.

Бесплатный доступ

В статье представлены данные о механизмах и клиническом значении нефропротективного действия ингибиторов натрий-глюкозного котранспортёра 2 типа (SGLT2). Обсуждаются эффекты, связанные с влиянием представителей данной фармакологической группы на скорость клубочковой фильтрации, уровень гликемии, диурез, кетогенез и другие факторы. Проанализированы результаты недавно проведённых экспериментальных и клинических исследований, направленных на изучение отдельных аспектов нефропротективного действия ингибиторов SGLT2 при сахарном диабете 2 типа и других патологических состояниях.

Сахарный диабет, пероральные сахароснижающие препараты, ингибиторы натрий-глюкозного котранспортёра 2 типа, ингибиторы sglt2, хроническая болезнь почек, диабетическая нефропатия, нефропротекция

Короткий адрес: https://sciup.org/14113478

IDR: 14113478   |   DOI: 10.32415/jscientia.2019.01.01

Список литературы Механизмы и клиническое значение нефропротективного действия ингибиторов натрий-глюкозного котранспортёра 2 типа

  • Thrasher J. Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies//Am. J. Cardiol. 2017. Vol. 120. S. 1. P. S4-S16 DOI: 10.1016/j.amjcard.2017.05.009
  • Демидова Т.Ю. Сосудистые осложнения сахарного диабета 2 типа за гранью гликемического контроля//Сахарный диабет. 2010. №3. С. 111-116.
  • Muskiet M.H., Tonneijck L., Smits M.M. et al. Pleiotropic effects of type 2 diabetes management strategies on renal risk factors//Lancet Diabetol. Endocrinol. 2015. Vol. 3. P. 367-381 DOI: 10.1016/S2213-8587(15)00030-3
  • Bonadonna R.C., Borghi C., Consoli A., Volpe M. Novel antidiabetic drugs and cardiovascular risk: Primum non nocere//Nutr. Metab. Cardiovasc. Dis. 2016. Vol. 26. P. 759-766 DOI: 10.1016/j.numecd.2016.05.007
  • Vallianou N.G., Geladari E., Kazazis C.E. SGLT-2 inhibitors: Their pleiotropic properties//Diabetes Metab. Syndr. 2017. Vol. 11. P. 311-315 DOI: 10.1016/j.dsx.2016.12.003
  • Satoh H. Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control//Diabetol. Int. 2018. Vol. 9. P. 212-214 DOI: 10.1007/s13340-018-0367-x
  • Maltese G., Abou-Saleh A., Gnudi L., Karalliedde J. Preventing diabetic renal disease: the potential reno-protective effects of SGLT2 inhibitors//Br. J. Diabetes Vasc. Dis. 2015. Vol. 15. P. 114-118 DOI: 10.15277/bjdvd.2015.031
  • Prie D. Familial renal glycosuria and modifications of glucose renal excretion//Diabetes Metab. 2014. Vol. 40. S. 1. P. S12-S16 DOI: 10.1016/S1262-3636(14)72690-4
  • Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus//Annu. Rev. Med. 2015. Vol. 66. P. 255-270 DOI: 10.1146/annurev-med-051013-110046
  • Maldonado-Cervantes M.I., Galicia O.G., Moreno-Jaime B. et al. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK1 cells//J. Physiol. Biochem. 2012. Vol. 68. P. 411-420 DOI: 10.1007/s13105-012-0153-3
  • Panchapakesan U., Pegg K., Gross S. et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells -renoprotection in diabetic nephropathy?//PLoS One. 2013. Vol. 8. e54442 DOI: 10.1371/journal.pone.0054442
  • Vallon V., Thomson S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition//Diabetologia. 2017. Vol. 60. P. 215-225 DOI: 10.1007/s00125-016-4157-3
  • Malatiali S., Francis I., Barac-Nieto M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats//Exp. Diabetes Res. 2008. Vol. 2008. ID305403 DOI: 10.1155/2008/305403
  • Osorio H., Coronel I., Arellano A. et al. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats//Oxid. Med. Cell. Longev. 2012. Vol. 2012. ID542042 DOI: 10.1155/2012/542042
  • Wakisaka M., Nagao T., Yoshinari M. Sodium glucose cotransporter 2 (SGLT2) plays as a physiological glucose sensor and regulates cellular contractility in rat mesangial cells//PLoS ONE. 2016. Vol. 11. e0151585 DOI: 10.1371/journal.pone.0151585
  • Gembardt F., Bartaun C., Jarzebska N. et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension//Am. J. Physiol. Renal Physiol. 2014. Vol. 307. P. F317-F325 DOI: 10.1152/ajprenal.00145.2014
  • Gallo L.A., Ward M.S., Fotheringham A.K. et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice//Sci Rep. 2016. Vol. 26. e26428 DOI: 10.1038/srep26428
  • Gangadharan Komala M., Gross S., Mudaliar H. et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice//PLoS One. 2014. Vol. 9. e108994 DOI: 10.1371/journal.pone.0108994
  • Ojima A., Matsui T., Nishino Y. et al. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis//Horm. Metab. Res. 2015. Vol. 47. P. 686-692 DOI: 10.1055/s-0034-1395609
  • Terami N., Ogawa D., Tachibana H. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice//PLoS One. 2014. Vol. 24. e100777 DOI: 10.1371/journal.pone.0100777
  • Hatanaka T., Ogawa D., Tachibana H. et al. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice//Pharmacol. Res. Perspect. 2016. Vol. 4. e00239 DOI: 10.1002/prp2.239
  • Nagata T., Fukuzawa T., Takeda M. et al. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice//Br. J. Pharmacol. 2013. Vol. 170. P. 519-531 DOI: 10.1111/bph.12269
  • Kawanami D., Matoba K., Takeda Y. et al. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy//Int. J. Mol. Sci. 2017. Vol. 18. P. E1083 DOI: 10.3390/ijms18051083
  • Jaikumkao K., Pongchaidecha A., Chueakula N. et al. Renal outcomes with sodium glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, in obese insulin-resistant model//Biochim. Biophys. Acta. 2018. Vol. 1864. P. 2021-2033 DOI: 10.1016/j.bbadis.2018.03.017
  • Kojima N., Williams J.M., Slaughter T.N. et al. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats//Physiol. Rep. 2015. Vol. 3. e12436 DOI: 10.14814/phy2.12436
  • Li L., Konishi Y., Morikawa T. et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats//J. Pharm Sci. 2018. Vol. 137. P. 220-223 DOI: 10.1016/j.jphs.2017.10.006
  • Zhang Y., Thai K., Kepecs D.M., Gilbert R.E. Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease//PLoS ONE. 2016. Vol. 11. e0144640 DOI: 10.1371/journal.pone.0144640
  • Tahara A., Takasu T. Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice//Eur. J. Pharmacol. 2018. Vol. 830. P. 68-75 DOI: 10.1016/j.ejphar.2018.04.024
  • Ma Q., Steiger S., Anders H.J. Sodium glucose transporter-2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease//Physiol. Rep. 2017. Vol. 5. e13228 DOI: 10.14814/phy2.13228
  • Chang Y.-K., Choi H., Jeong J.Y. et al. Dapagliflozin, SGLT2 Inhibitor, attenuates renal ischemia-reperfusion injury//PLoS ONE. 2016. Vol. 11. e0158810 DOI: 10.1371/journal.pone.0158810
  • Zapata-Morales J.R., Galicia-Cruz O.G., Franco M., Morales F.M. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia//J. Biol. Chem. 2014. Vol. 289. P. 346-357 DOI: 10.1074/jbc.M113.526814
  • Shimazu T., Hirschey M.D., Newman J. et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor//Science. 2013. Vol. 339. P. 211-214 DOI: 10.1126/science.1227166
  • Guder W.G., Wagner S., Wirthensohn G. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction//Kidney Int. 1986. Vol. 29. P. 41-45.
  • Wanner C., Inzucchi S.E., Zinman B. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes//N. Engl. J. Med. 2016. Vol. 375. P. 323-334 DOI: 10.1056/NEJMc1611290
  • Mudaliar S., Alloju S., Henry R.R. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis//Diabetes Care. 2016. Vol. 39. P. 1115-1122 DOI: 10.2337/dc16-0542
  • Perkovic V., de Zeeuw D., Mahaffey K.W. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials//Lancet Diabetes Endocrinol. 2018. Vol. 6. P. 691-704 DOI: 10.1016/S2213-8587(18)30141-4
  • Wiviott S.D., Raz I., Bonaca M.P. et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes//N. Engl. J. Med. 2018. Nov 10 DOI: 10.1056/NEJMoa1812389
  • Clegg L.E., Heerspink H.J.L., Penland R.C. et al. Reduction of Cardiovascular Risk and Improved Estimated Glomerular Filtration Rate by SGLT2 Inhibitors, Including Dapagliflozin, Is Consistent Across the Class: An Analysis of the Placebo Arm of EXSCEL//Diabetes Care. 2019. Vol. 42. P. 318-326 DOI: 10.2337/dc18-1871
  • Tang H., Li D., Zhang J. et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: A network and cumulative meta-analysis of randomized controlled trials//Diabetes Obes. Metab. 2017. Vol. 19. P. 1106-1115 DOI: 10.1111/dom.12917
  • Cherney D.Z., Perkins B.A., Soleymanlou N. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus//Circulation. 2014. Vol. 129. P. 587-597 DOI: 10.1161/CIRCULATIONAHA.113.005081
  • Gomez D.M. Evaluation of renal resistances, with special reference to changes in essential hypertension//J. Clin. Invest. 1951. Vol. 30. P. 1143-1155.
  • Skrtic M., Yang G.K., Perkins B.A. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration//Diabetologia. 2014. Vol. 57. P. 2599-2602 DOI: 10.1007/s00125-014-3396-4
  • Dekkers C.C.J., Petrykiv S., Laverman G.D. et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers//Diabetes Obes Metab. 2018. Vol. 20. P. 1988-1993 DOI: 10.1111/dom.13301
  • Fioretto P., Del Prato S., Buse J.B. et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study//Diabetes Obes. Metab. 2018. Vol. 20. P. 2532-2540 DOI: 10.1111/dom.13413
  • Petrykiv S., Sjostrom C.D., Greasley P.J. Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function//Clin. J. Am. Soc. Nephrol. 2017. Vol. 12. P. 751-759 DOI: 10.2215/CJN.10180916
  • U. S. National Library of Medicine Clinical Trials Database. URL: https://clinicaltrials.gov.
  • Lewin A., DeFronzo R.A., Patel S. et al. Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes//Diabetes Care. 2015. Vol. 38. P. 394-402 DOI: 10.2337/dc14-2365
  • Muller M.E., Pruijm M., Bonny O. et al. Effects of the SGLT-2 Inhibitor Empagliflozin on Renal Tissue Oxygenation in Non-Diabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Study Protocol//Adv Ther. 2018. Vol. 35. P. 875-885 DOI: 10.1007/s12325-018-0708-y
  • Rajasekeran H., Reich H.N., Hladunewich M.A. et al. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study//Am. J. Physiol. Renal Physiol. 2018. Vol. 314. P. F412-F422 DOI: 10.1152/ajprenal.00445.2017
  • Mordi N.A., Mordi I.R., Singh J.S. Renal and Cardiovascular Effects of sodium-glucose cotransporter 2 (SGLT2) inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure (RECEDE-CHF): protocol for a randomised controlled double-blind cross-over trial//BMJ Open. 2017. Vol. 7. E018097 DOI: 10.1136/bmjopen-2017-018097
Еще
Статья научная