Механизмы развития гипергликемии и способы ее коррекции при новой коронавирусной инфекции

Автор: Петров В. И., Шаталова О. В., Глазова Г. М.

Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk

Рубрика: Обзоры и лекции

Статья в выпуске: 4 т.37, 2022 года.

Бесплатный доступ

Гипергликемия стала актуальной проблемой при новой коронавирусной инфекции, так как является предиктором тяжелого течения и плохих исходов как у больных сахарным диабетом (СД), так и у больных без диабета. В статье описаны возможные механизмы развития гипергликемии при новой коронавирусной инфекции COVID-19 с учетом особенностей патогенеза и течения заболевания, репродукции SARS-CoV-2, способы коррекции гипергликемии путем назначения различных режимов инсулинотерапии на основании проведенного обзора отечественной и зарубежной литературы.

Новая коронавирусная инфекция, covid-19, sars-cov-2, гипергликемия, механизм развития, нарушения углеводного обмена, инсулинорезистентность, сахарный диабет, гликемический контроль, лечение

Короткий адрес: https://sciup.org/149141450

IDR: 149141450   |   DOI: 10.29001/2073-8552-2022-37-4-22-30

Список литературы Механизмы развития гипергликемии и способы ее коррекции при новой коронавирусной инфекции

  • WHO Coronavirus (COVID-19) Dashboard. URL: https://covid19.who. int/table
  • Parohan M., Yaghoubi S., Seraji A., Javanbakht M., Sarraf P., Djala-li M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of observational studies. Aging Male. 2020;23(5):1416-1424. DOI: 10.1080/13685538.2020.1774748.
  • Corona G., Pizzocaro A., Vena W., Rastrelli G., Semeraro F., Isidori A. et al. Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2021;22(2):275-296. DOI: 10.1007/s11154-021-09630-8.
  • Barron E., Bakhai C., Kar P., Weaver A., Bradley D., Ismail H. et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813-822. DOI: 10.1016/S2213-8587(20)30272-2.
  • Шестакова М.В., Викулова О.К., Исаков М.А., Дедов И.И. Сахарный диабет и COVID-19: анализ клинических исходов по данным Регистра сахарного диабета Российской Федерации. Проблемы Эндокринологии. 2020;66(1):35-46. DOI: 10.14341/probl12458. Shestakova M.V., Vikulova O.K., Isakov M.A., Dedov I.I. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the Russian diabetes registry. Problems of Endocrinology. 2020;66(1):35-46. (In Russ.).
  • Gerganova A., Assyov Y., Kamenov Z. Stress gyperglycemia, diabetes mellitus and COVID-19 infection: Risk factors, clinical outcomes and post-discharge implications. Frontiers in Clinical Diabetes and Healthcare. 2022. DOI: 10.3389/fcdhc.2022.826006.
  • Zhu L., She Z., Cheng X., Qin J., Zhang X., Cai J. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell. Metab. 2020;31(6):1068-1077.e3. DOI: 10.1016/j.cmet.2020.04.021.
  • Hafidh K., Abbas S., Khan A., Kazmi T., Nazir Z., Aldaham T. The clinical characteristics and outcomes of COVID-19 infections in patients with diabetes at a tertiary care center in the UAE. Dubai Diabetes and Endocrinol. J. 2020;26(4):158-163. DOI: 10.1159/000512232.
  • Dungan K., Braithwaite S., Preiser J. Stress hyperglycaemia. Lancet. 2009;373(9677):1798-1807. DOI: 10.1016/S0140-6736(09)60553-5.
  • Moghissi E., Korytkowski M., DiNardo M., Einhorn D., Hellman R., Hirsch I. et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32(6):1119-1131. DOI: 10.2337/dc09-9029.
  • Lang C., Dobrescu C., Meszaros K. Insulin-mediated glucose uptake by individual tissues during sepsis. Metabolism. 1990;39(10):1096-1107. DOI: 10.1016/0026-0495(90)90172-9.
  • Yu K., Pessin J., Czech M. Regulation of insulin receptor kinase by multisite phosphorylation. Biochimie. 1985;67(10-11):1081-1093. DOI: 10.1016/s0300-9084(85)80105-x.
  • Drews G., Debuyser A., Nenquin M., Henquin J. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane. Endocrinology. 1990;126(3):1646-1653. DOI: 10.1210/endo-126-3-1646.
  • Ishizuka K., Usui I., Kanatani Y., Bukhari A., He J., Fujisaka S. et al. Chronic tumor necrosis factor-alpha treatment causes insulin resistance via insulin receptor substrate-1 serine phosphorylation and suppressor of cytokine signaling-3 induction in 3T3-L1 adipocytes. Endocrinology. 2007;148(6):2994-3003. DOI: 10.1210/en.2006-1702.
  • Whitcomb B., Pradhan E., Pittas A., Roghmann M., Perencevich E. Impact of admission hyperglycemia on hospital mortality in various intensive care unit populations. Crit. Care Med. 2005;33(12):2772-2777. DOI: 10.1097/01.ccm.0000189741.44071.25.
  • Zauner A., Nimmerrichter P., Anderwald C., Bischof M., Schiefermeier M., Ratheiser K. et al. Severity of insulin resistance in critically ill medical patients. Metabolism. 2007;56(1):1-5. DOI: 10.1016/j.me-tabol.2006.08.014.
  • Vanhorebeek I., Van den Berghe G. Diabetes of injury: Tovel insights. Endocrinol. Metab. Clin. North. Am. 2006;35(4):859-x. DOI: 10.1016/j. ecl.2006.09.002.
  • Schetz M., Vanhorebeek I., Wouters P., Wilmer A., Van den Berghe G. Tight blood glucose control is renoprotective in critically ill patients. J. Am. Soc. Nephrol. 2008;19(3):571-578. DOI: 10.1681/ASN.2006101091.
  • Weir G., Aguayo-Mazzucato C., Bonner-Weir S. ß-cell dedifferentiation in diabetes is important, but what is it? Islets. 2013;5(5):233-237. DOI: 10.4161/isl.27494.
  • Capes S., Hunt D., Malmberg K., Gerstein H. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773-778. DOI: 10.1016/S0140-6736(99)08415-9.
  • Hamming I., Timens W., Bulthuis M., Lely A., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631-637. DOI: 10.1002/path.1570.
  • Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 2020;14(2):185-192. DOI: 10.1007/s11684-020-0754-0.
  • Zhang H., Li H., Lyu J., Lei X., Li W., Wu G. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int. J. Infect. Dis. 2020;96:19-24. DOI: 10.1016/j.ijid.2020.04.027.
  • Mine K., Yoshikai Y., Takahashi H., Mori H., Anzai K., Nagafuchi S. Genetic susceptibility of the host in virus-induced diabetes. Microorganisms. 2020;8(8):1133. DOI: 10.3390/microorganisms8081133.
  • Hober D., Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol. 2010;6(5):279-289. DOI: 10.1038/nrendo.2010.27.
  • Oshima M., Knoch K., Diedisheim M., Petzold A., Cattan P., Bugliani M. et al. Virus-like infection induces human ß cell dedifferentiation. JCI Insight. 2018;3(3). DOI: 10.1172/jci.insight.97732.
  • Steenblock C., Richter S., Berger I., Barovic M., Schmid J., Schubert U. et al. Viral infiltration of pancreatic islets in patients with COVID-19. Nat. Commun. 2021;12(1):3534. DOI: 10.1038/s41467-021-23886-3.
  • Meessen-Pinard M., Le Coupanec A., Desforges M., Talbot J. Pivotal role of receptor-interacting protein kinase 1 and mixed lineage kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43. J. Virol. 2016;91(1):e01513- e01516. DOI: 10.1128/ JVI.01513-16.
  • Wu C., Lidsky P., Xiao Y., Lee I., Cheng R., Nakayama T. et al. SARS-CoV-2 infects human pancreatic ß cells and elicits ß cell impairment. Cell. Metab. 2021;33(8):1565-1576.e5. DOI: 10.1016/j. cmet.2021.05.013.
  • Yang L., Han Y., Nilsson-Payant B., Gupta V., Wang P., Duan X. et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tro-pism and model virus infection in human cells and organoids. Cell. Stem. Cell. 2020;27(1):125-136.e7. DOI: 10.1016/j.stem.2020.06.015.
  • Tang X., Uhl S., Zhang T., Xue D., Li B., Vandana J. et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell. Metab. 2021;33(8):1577-1591.e7. DOI: 10.1016/j.cmet.2021.05.015.
  • Müller J., Gross R., Conzelmann C., Krüger J., Merle U., Steinhart J. et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab. 2021;3(2):149-165. DOI: 10.1038/ s42255-021-00347-1.
  • Qadir M., Bhondeley M., Beatty W., Gaupp D., Doyle-Meyers L., Fischer T. et al. SARS-CoV-2 infection of the pancreas promotes throm-bofibrosis and is associated with new-onset diabetes. JCI Insight. 2021;6(16):e151551. DOI: 10.1172/jci.insight.151551.
  • Kusmartseva I., Wu W., Syed F., Van Der Heide V., Jorgensen M., Joseph P. et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell. Metab. 2020;32(6):1041-1051.e6. DOI: 10.1016/j.cmet.2020.11.005.
  • Unnikrishnan R., Misra A. Diabetes and COVID19: A bidirectional relationship. Nutrition & Diabetes. 2021;11(1):21. DOI: 10.1038/s41387-021-00163-2.
  • Cheung N. Steroid-induced hyperglycaemia in hospitalised patients: Does it matter? Diabetologia. 2016;59(12):2507-2509. DOI: 10.1007/ s00125-016-4116-z.
  • Fong A., Cheung N. The high incidence of steroid-induced hyperglycaemia in hospital. Diabetes Res. Clin. Pract. 2013;99(3):277-280. DOI: 10.1016/j.diabres.2012.12.023.
  • Saand A., Flores M., Kewan T., Alqaisi S., Alwakeel M., Griffiths L. et al. Does inpatient hyperglycemia predict a worse outcome in COVID-19 intensive care unit patients? J. Diabetes. 2021;13(3):253-260. DOI: 10.1111/1753-0407.13137.
  • Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021;384(8):693-704. DOI: 10.1056/nejmoa2021436.
  • Khunti K., Del Prato S., Mathieu C., Kahn S., Gabbay R., Buse J. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care. 2021;44(12):2645-2655. DOI: 10.2337/dc21-1318.
  • Bonaventura A., Montecucco F. Steroid-induced hyperglycemia: An underdiagnosed problem or clinical inertia? A narrative review. Diabetes Res. Clin. Pract. 2018;139:203-220. DOI: 10.1016/j.dia-bres.2018.03.006.
  • Beaupere C., Liboz A., Fève B., Blondeau B., Guillemain G. Molecular mechanisms of glucocorticoid-induced insulin resistance. Int. J. Mol. Sci. 2021;22(2):623. DOI: 10.3390/ijms22020623.
  • Sardu C., D'onofrio N., Balestrieri M., Barbieri M., Rizzo M., Messina V. et al. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care. 2020;43(7):1408-1415. DOI: 10.2337/dc20-0723.
  • American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee:, Draznin B., Aroda V., Bakris G., Benson G., Brown F., Freeman R. et al. 16. Diabetes care in the hospital: Standards of medical care in Diabetes-2022. Diabetes Care. 2022;45(1): S244-S253. DOI: 10.2337/dc22-S016.
  • Pérez Pérez A., Conthe Gutiérrez P., Aguilar Diosdado M., Bertomeu Martinez V., Galdos Anuncibay P., Garcia De Casasola G. et al. Hospital management of hyperglycemia. Med. Clin. (Barc.). 2009;132(12):465-475. (In Span.). DOI: 10.1016/j.medcli.2009.02.001.
  • Umpierrez G., Smiley D., Jacobs S., Peng L., Temponi A., Mulligan P. et al. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). Diabetes Care. 2011;34(2):256-261. DOI: 10.2337/ dc10-1407.
  • Bellido V., Suarez L., Rodriguez M., Sanchez C., Dieguez M., Riestra M. et al. Comparison of basal-bolus and premixed insulin regimens in hospitalized patients with type 2 diabetes. Diabetes Care. 2015;38(12):2211-2216. DOI: 10.2337/dc15-0160.
  • Umpierrez G., Smiley D., Hermayer K., Khan A., Olson D., Newton C. et al. Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: Basal plus trial. Diabetes Care. 2013;36(8):2169-2174. DOI: 10.2337/dc12-1988.
  • Bueno E., Benitez A., Rufinelli J., Figueredo R., Alsina S., Ojeda A. et al. Basal-bolus regimen with insulin analogues versus human insulin in medical patients with type 2 diabetes: A randomized controlled trial in Latin America. Endocr. Pract. 2015;21(7):807-813. DOI: 10.4158/EP15675.OR.
  • Gentile S., Strollo F., Ceriello A. COVID-19 infection in Italian people with diabetes: Lessons learned for our future (an experience to be used). Diabetes Res. Clin. Pract. 2020;162:108137. DOI: 10.1016/j.di-abres.2020.108137.
  • Lopez-Huamanrayme E., Garate-Chirinos D., Espinoza-Morales F., Del-Castillo-Ochoa S., Gomez-Noronha A., Salsavilca-Macavilca E. et al. Association between hyperglycemia treatment and mortality in patients with diabetes and COVID-19 in a Peruvian hospital: A retrospective cohort study. J. Clin. Transl. Endocrinol. 2021;26:100265. DOI: 10.1016/j.jcte.2021.100265.
  • Pichardo-Lowden A., Fan C., Gabbay R. Management of hyperglycemia in the non-intensive care patient: featuring subcutaneous insulin protocols. Endocr. Pract. 2011;17(2):249-260. DOI: 10.4158/EP10220.RA.
  • Roberts A., James J., Dhatariya K., Agarwal N., Brake J., Brooks C. et al. Joint British Diabetes Societies (JBDS) for Inpatient Care. Management of hyperglycaemia and steroid (glucocorticoid) therapy: A guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. Di-abet. Med. 2018;35(8):1011-1017. DOI: 10.1111/dme.13675.
  • Rayman G., Lumb A., Kennon B., Cottrell C., Nagi D., Page E. et al. Dexamethasone therapy in COVID-19 patients: Implications and guidance for the management of blood glucose in people with and without diabetes. Diabet. Med. 2021;38(1):e14378. DOI: 10.1111/dme.14378.
  • Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 16 (18.08.2022). Temporary guidelines "Prevention, diagnosis and treatment of new coro-navirus infection (COVID-19)". Version 16 (08/18/2022). (In Russ.).
  • Стронгин Л.Г., Некрасова Т.А., Беликина Д.В., Корнева К.Г., Петров А.В. Дисгликемия при COVID-19 и сахарном диабете 2 типа: особенности гликемического профиля у госпитализированных пациентов и роль стероид-индуцированных нарушений. Проблемы Эндокринологии. 2022;68(2):56-65. DOI: 10.14341/probl12840. Strongin L.G., Nekrasova T.A., Belikina D.V., Korneva K.G., Petrov A.V. Dysglycemia in COVID-19 and Type 2 Diabetes Mellitus: Peculiarities of the Glycemic Profile in Hospitalized Patients and the Role of Steroid-Induced Disorders. Problems of Endocrinology. 2022;68(2):56-65. (In Russ.). DOI: 10.14341/probl12840.
  • Дедов И.И., Мокрышева Н.Г., Шестакова М.В., Никонова Т.В., Майоров А.Ю., Галстян Г.Р. и др. Контроль гликемии и выбор антигиперг-ликемической терапии у пациентов с сахарным диабетом 2 типа и COVID-19: консенсусное решение совета экспертов Российской ассоциации эндокринологов. Сахарный диабет. 2022;25(1):27-49. DOI: 10.14341/DM12873. Dedov I.I., Mokryisheva N.G., Shestakova M.V., Nikonova T.V., Mayorov A.Yu., Galstyan G.R. et al. Glycemia control and choice of antihyperglycemic therapy in patients with type 2 diabetes mellitus and COVID-19: A consensus decision of the board of experts of the Russian association of endocrinologists. Diabetes Mellitus. 2022;25(1):27-49. (In Russ.). DOI: 10.14341/DM12873.
Еще
Статья научная