Метаболомные подходы в изучении сердечно-сосудистых заболеваний

Автор: Абдуллаев А.А., Абдуллаева Г.Ж., Юсупова Х.Ф.

Журнал: Евразийский кардиологический журнал @eurasian-cardiology-journal

Рубрика: Обзоры

Статья в выпуске: 1, 2021 года.

Бесплатный доступ

Современные научные достижения дают клиницистам преимущество в использовании дополнительных инструментов и методов оказания помощи в клинической оценке и расширения их возможностей для классификации пациентов по факторам риска сердечно-сосудистых осложнений. Биомаркеры - это простой инструмент, позволяющий идентифицировать и классифицировать людей с различной степенью риска, быстро и точно диагностировать состояние болезни, эффективно прогнозировать и контролировать лечение. Следовательно, изучение биомаркеров является серьезным и перспективным подходом к пониманию и лечению ССЗ. Среди них особое место занимают генетические и биохимические маркеры. Кардио-метаболомика является новой наукой, которая позволяет исследователям изучать изменения в метаболоме и метаболических сетях, при заболеваниях сердечнососудистой системы, чтобы лучше понять их патофизиологический механизм. Таким образом, изучение метаболома может дать важную информацию о патогенезе сердечно-сосудистых заболеваний, а также предложить возможность выявления новых биомаркеров ССЗ.

Еще

Биомаркеры, метаболомика, омикс, сердечно-сосудистые заболевания, гипертрофия сердечной мышцы, сердечная недостаточность

Короткий адрес: https://sciup.org/143176194

IDR: 143176194   |   DOI: 10.38109/2225-1685-2021-1-106-117

Список литературы Метаболомные подходы в изучении сердечно-сосудистых заболеваний

  • World Health Organization. 2020. https://www.who.int/health-topics/ cardiovascular-diseases/#tab=tab_1
  • Panju AA., Hemmelgarn B.R., Guyatt G.H. et al. Is this patient having a myocardial infarction? JAMA. 1996; 280 (14): 1256-1263.
  • Pope J.H., Aufderheide T.P., Ruthazer R. et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N. Engl. J. Med. 2000; 342 (16): 1163-1170.
  • Naghavi M., Libby P., Falk E. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003; 108 (15): 1772-1778.
  • Wishart D.S., Feunang Y.D., Marcu A. et al. HMDB 4.0 — The Human Metabolome Database for 2018. Nucleic Acids Res. 2018. Jan 4; 46(D1): D 608-17.29140435.
  • Ellis D. I., Dunn W. B., Griffin J. L. et al. "Metabolic fingerprinting as a diagnostic tool". Pharmacogenomics. 2007; vol. 8, № 9:1243-1266.
  • Tweeddale H., Notley-McRobb L., Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool («metabolome») analysis. J. Bacteriol. 1998; 180(19):5109-16.
  • Sabatine M.S., Liu E., Morrow D.A. et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation. 2005; 112:38683875. doi: 10.1161/CIRCULATI0NAHA.105.569137.
  • Griffin J. L., Atherton H., Shockcor J. et al. "Metabolomics as a tool for cardiac research". Nature Reviews Cardiology. 2011; vol. 8, no. 11: 630-643.
  • Wishart D.S., Jewison T, Guo A.C. et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013; 41:801-807.
  • Cheng S., Shah S.H., Corwin EJ., et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: a scientific statement from the American Heart Association. Circ. Cardiovasc. Genet. 2017; 10: e000032.
  • Allard M.F., Schonekess B.O., Henning S.L. et al. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 1994; 267: 742-750.
  • Burelle Y., Wambolt R.B., Grist M. et al. Regular exercise is associated with a protective metabolic phenotype inthe rat heart. Am J Physiol Heart Circ Physiol. 2004; 287:1055-1063.
  • Lai L, Leone T.C., Keller M.P. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 2014; 7:1022-1031.
  • Kato T., Niizuma S., Inuzuka Y. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 2010; 3:420-430.
  • Meerson F.Z., Spiritchev V.B., Pshennikova M.G. et al. The role of the pentose-phosphate pathway in adjustment of the heart to ahigh load and the development of myocardial hypertrophy. Experientia. 1967; 23: 530-532.
  • Zimmer H.G., Ibel H., Steinkopff G. Studies on the hexose monophosphate shunt in the myocardium during development of hypertrophy. Adv. Myocardiol. 1980; 1:487-492.
  • Leong H.S., Grist M., Parsons H. et al. Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol. Endocrinol. Metab. 2002; 282:1039-1045.
  • Young M.E., Yan J., Razeghi P. et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul. Syst. Bio. 2007; 1: 251-262.
  • Kolwicz S.C.Jr., Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011; 90:194-201.
  • Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ Res. 2013; 113:709-724.
  • Ussher J.R., Elmariah S., Gerszten R.E. et al. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol. 2016; 68:2850-2870.
  • De Jong KA., Lopaschuk G.D. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can. J. Cardiol. 2017; 33:860-871.
  • Neubauer S. The failing heart-an engine out of fuel. N. Engl. J. Med. 2007; 356:1140-1151.
  • Nascimben L., Ingwall J.S., Pauletto P. et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation. 1996; 94:18941901.
  • van Bilsen M., van Nieuwenhoven FA., van der Vusse G.J. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res.2009; 81:420-428.
  • Scheubel R.J., Tostlebe M., Simm A. et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J. Am. Coll. Cardiol. 2002; 40: 2174-2181.
  • Gupte AA, Hamilton D.J, Cordero-Reyes AM. et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ. Cardiovasc. Genet. 2014; 7:266-276.
  • Sansbury B.E., DeMartino A.M., Xie Z. et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ. Heart. Fail. 2014; 7: 634-642.
  • Sun H., Olson K.C., Gao C. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016; 133:2038-2049. doi:10.1161/CIRCULATI0NAHA.115.020226.
  • Aubert G., Martin O.J., Horton J.L. et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016; 133: CIRCULATI0NAHA.115.017355.
  • Bedi K.C. Jr., Snyder N.W., Brandimarto J. et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016; 133:706-716. doi: 10.1161/CIRCULATI0NAHA.115.017545.
  • Ferrara C.T., Wang P., Neto EC. et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 2008. doi: 10.1371/journal.pgen.1000034.
  • Hunter W.G., Kelly J.P., McGarrah RWIII. et al. Metabolic dysfunction in heart failure: diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr. Heart Fail. Rep. 2016; 13:119-131. doi: 10.1007/s11897-016-0289-5.
  • Doehner W., Frenneaux M., Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J. Am. Coll. Cardiol. 2014; 64:1388-1400. doi: 10.1016/j.jacc.2014.04.083.
  • Ahmad T., Kelly JP., McGarrah RW. et al. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J. Am. Coll. Cardiol. 2016; 67:291-299. doi:10.1016/j.jacc.2015.10.079.
  • Hinterwirth H., Stegemann C., Mayr M. Lipidomics: quest for molecular lipid biomarkers in cardiovascular disease. Circ. Cardiovasc. Genet. 2014; 7:941-954. doi: 10.1161/CIRCGENETICS.114.000550.
  • Sparagna G.C., Lesnefsky E.J. Cardiolipin remodeling in the heart.J. Cardiovasc Pharmacol. 2009; 53: 290-301. doi: 10.1097/ FJC.0b013e31819b5461.
  • Saini-Chohan H.K., Holmes M.G., Chicco A.J. et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J. Lipid Res. 2009; 50: 1600-1608. doi: 10.1194/jlr. M800561-JLR200.
  • Han X., Yang J, Cheng H. et al. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry. 2005; 44:16684-16694. doi: 10.1021/bi051908a.
  • Benjamin E.J., Blaha M.J., Chiuve S.E. et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017; 135: 146-603. doi:10.1161/ CIR.0000000000000485.
  • Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005; 85: 1093-1129. doi: 10.1152/physrev.00006.2004.
  • Lopaschuk G. Regulation of carbohydrate metabolism in ischemia and reperfusion. Am. Heart J. 2000; 139:115-119.
  • Lopaschuk G.D, Ussher J.R., Folmes C.D. et al. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010; 90:207-258. doi: 10.1152/physrev.00015.2009.
  • Chouchani E.T., Pell V.R., Gaude E. et al. Ischemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515:431-435. doi: 10.1038/nature13909.
  • Li T., Zhang Z., Kolwicz SCJr. et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017; 25: 374-385. doi:10.1016/j.cmet.2016.11.005.
  • Gao, X., Ke, C., Liu, H. et al. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis. Sci. Rep. 2017; 7:11817. https://doi.org/10.1038/s41598-017-12254-1
  • Newgard C.B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017; 25:43-56. doi: 10.1016/j.cmet.2016.09.018.
  • Felig P., Marliss E., Cahill GF.Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl. J. Med. 1969; 281:811-816. doi:10.1056/ NEJM196910092811503.
  • Newgard C.B., An J., Bain J.R. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9: 311-326. doi:10.1016/j.cmet.2009.02.002.
  • White P.J., Lapworth A.L., An J. et al. Branched-chain amino acid restriction inZucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016; 5:538-551. doi: 10.1016/j.molmet.2016.04.006.
  • Shaham O., Wei R., Wang T.J. et al Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 2008; 4:214. doi: 10.1038/msb.2008.50.
  • Huffman K.M., Shah S.H., Stevens R.D. et al. Relationships between circulating metabolic intermediates and insulinaction in overweight to obese, inactive men and women. Diabetes Care. 2009; 32:1678-1683. doi: 10.2337/dc08-2075.
  • Tai E.S., Tan M.L., Stevens R.D. et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010; 53: 757-767. doi: 10.1007/ s00125-009-1637-8.
  • Batch B.C., Shah S.H., Newgard C.B. et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 2013; 62:961-969. doi:10.1016/j.metabol.2013.01.007.
  • Wang T.J., Larson M.G., Vasan R.S. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011; 17:448-453. doi: 10.1038/ nm.2307.
  • Shah S.H., Crosslin D.R., Haynes C.S. et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012; 55:321-330. doi: 10.1007/s00125-011-2356-5.
  • 58.Laferrere B., Reilly D., Arias S., et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 2011; 3:80re2. doi:10.1126/scitranslmed.3002043.
  • Newgard C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012; 15: 606-614. doi:10.1016/j.cmet.2012.01.024.
  • Shah S.H., Newgard C.B. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ. Cardiovasc. Genet. 2015; 8: 410-419. doi: 10.1161/ CIRCGENETICS.114.000223.
  • Shah S.H, Kraus W.E., Newgard C.B.. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012; 126: 1110-1120.doi: 10.1161/CIRCULATI0NAHA.111.060368.
  • Shah S.H., Bain J.R., Muehlbauer M.J. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 2010; 3: 207-214. doi: 10.1161/CIRCGENETICS.109.852814.
  • Ridaura V.K., Faith J.J., Rey F.E. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341:1241214. doi: 10.1126/science.1241214.
  • Feng Q, Liu Z, Zhong S. et al. "Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease". Scientific Reportsvol. 2016; 6: Article ID 22525.
  • Jonsson A. L. and F. Backhed, "Role of gut microbiota in "atherosclerosis," Nature Reviews Cardiology. 2016; vol. 14, no. 2:79-87.
  • Wang Z, Klipfell E, Bennett B.J. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472:57-63. doi: 10.1038/nature09922.
  • Tang W.H., Wang Z, Levison B.S. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl. J. Med. 2013; 368:1575-1584. doi:10.1056/NEJMoa1109400.
  • Senthong V, Wang Z, Fan Y. et al. Trimethylamine N -oxide and mortality risk in patients with peripheral artery disease. J. Am. Heart Assoc. 2016; 5: e004237.
  • Tang W.H., Wang Z, Fan Y. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am. Coll. Cardiol. 2014; 64:1908-1914. doi:10.1016/j.jacc.2014.02.617.
  • Tang W.H., Wang Z, Kennedy D.J. et al. Gut microbiota-dependent trimethylamineN-oxide (TMAO)pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015; 116:448-455. doi: 10.1161/CIRCRESAHA.116.305360.
  • Organ C.L., Otsuka H, Bhushan S. et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ. Hear. Fail. 2016; 9: e 002314.
  • Senthong V, Wang Z, Li X.S. et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and5-year mortality risk in stable coronary artery disease: the contributoryrole of intestinal microbiota in a COURAGE-like patient cohort. J. Am.Heart Assoc. 2016; 5: e002816.
  • Undurti A, Huang Y, Lupica J.A. et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 2009; 284:30825-30835. doi:10.1074/jbc.M109.047605.
  • Wang Z, Roberts A.B., Buffa J.A. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585-1595. doi: 10.1016/j.cell.2015.11.055.
  • Gieger C, Geistlinger L, Altmaier E. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008; 4: e1000282. doi: 10.1371/journal.pgen.1000282.
  • Illig T, Gieger C, Zhai G. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 2010; 42: 137-141. doi:10.1038/ng.507.
  • Suhre K, Shin S.Y., Petersen A.K. et al. CARDIoGRAM. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011; 477:54-60. doi: 10.1038/nature10354.
  • Rhee E.P., Ho J.E., Chen M.H. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013; 18:130-143. doi: 10.1016/j.cmet.2013.06.013.
  • Draisma H.H.M., Pool R, Kobl M. et al. Genome-wide associationstudy identifies novel genetic variants contributing to variation inblood metabolite levels. Nat Commun. 2015; 6: 7208. doi: 10.1038/ ncomms8208.
  • Bennett B.J., de Aguiar Vallim T.Q., Wang Z. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013; 17: 49-60. doi: 10.1016/j.cmet.2012.12.011.
  • Kraus WE., Muoio D.M., Stevens R. et al. Metabolomic quantitative trait loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. PLoS Genet. 2015; 11: e1005553. doi:10.1371/journal.pgen.1005553.
  • Mayr M., Madhu B., Xu Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc. Med. 2007; 17: 43-48. doi:10.1016/j.tcm.2006.11.004.
  • Mayr M, Chung YL, Mayr U. et al. Loss of PKC-delta alters cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 2004.287. P. 937-945. doi:10.1152/ajpheart.00877.2003.
  • Mayr M., Metzler B., Chung Y.L., et al. Ischemic preconditioning exaggerates cardiac damage in PKC-delta null mice. Am J Physiol Heart Circ Physiol. 2004; 287:946-956. doi:10.1152/ajpheart.00878.2003.
  • Mayr M., Liem D., Zhang J. et al. Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J. Mol. Cell Cardiol. 2009; 46:268-277. doi:10.1016/j.yjmcc.2008.10.008.
  • Mayr M., Chung Y.L., Mayr U. et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol. 2005; 25:2135-2142. doi: 10.1161/01. ATV.0000183928.25844.f6.
  • Perez-Riverol Y., Bai M., da Veiga Leprevost F. et al. Discovering and linking public omics data sets using the Omics Discovery Index. Nat. Biotechnol. 2017; 3:406-409. doi: 10.1038/nbt.3790.
  • Noor Elad, Cherkaoui Sarah and Sauer Uwe. Biological insights through omics data integration. Current Opinion in Systems Biology. 2019; 15: 39-47. https://doi.org/10.1016/jcoisb.2019.03.007
  • Petersen A.K., Zeilinger S., Kastenmüller G. et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet. 2014.23. P. 534-545. doi:10.1093/ hmg/ddt430.
  • Cook DJ., Nielsen J. Genome-scale metabolic models applied to human health and disease. Wiley Interdiscip Rev. Syst. Biol. Med. 2017; 9:1393.
  • Duarte N.C., Becker S.A., Jamshidi N., et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007; 104: 1777-1782. doi: 10.1073/ pnas.0610772104.
  • Karlstädt A., Fliegner D., Kararigas G. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol. 2012; 6:114. doi:10.1186/1752-0509-6-114.
  • Karlstaedt A., Zhang X., Vitrac H. et al. Oncometabolite d-2-hydroxyglutarateimpairs a-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl. Acad. Sci. USA. 2016; 113:1043610441. doi:10.1073/pnas.1601650113.
  • Chan S.Y., Loscalzo J. The emerging paradigm of network medicine in the study of human disease. Circ. Res. 2012; 111:359-374. doi:10.1161/ CIRCRESAHA.111.258541.
Еще
Статья научная