Метанообразование в рубце и методы его снижения с использованием алиментарных факторов (обзор)

Автор: Боголюбова Н.В., Зеленченкова А.А., Колесник Н.С., Лахонин П.Д.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 6 т.57, 2022 года.

Бесплатный доступ

Метан - один из важных парниковых газов, обладающий более высоким потенциалом глобального потепления, чем углекислый газ. Сельское хозяйство, особенно животноводство, считается крупнейшим сектором производства антропогенного метана. Среди домашнего скота жвачные животные являются основными источниками метана. Производство и выбросы метана жвачными животными в мире увеличиваются с увеличением численности жвачных животных, что помогает удовлетворить потребности в питательных веществах растущего населения во всем мире. В рубце жвачных преобладает гидрогенотрофный сценарий метаногенеза - непрерывного процесса, осуществляемого археями, при котором метан образуется в результате реакции водорода и углекислого газа. За последние 50 лет опубликованы результаты огромного количества исследований, которые улучшили понимание сложных процессов ферментации рубца и метаногенеза у жвачных животных, а также средств, с помощью которых можно измерить и снизить выработку метана в организме жвачных (K.A. Beauchemin с соавт., 2020). Все известные стратегии по снижению образования метана в организме жвачных животных можно разделить на две группы. Первая группа объединяет стратегии управления процессом с помощью рационов и других факторов, влияющих на микрофлору рубца. Качество, способ подготовки кормов, соотношение концентрированных и грубых кормов в рационе влияют на выбросы метана. Некоторые корма могут повышать выработку пропионата или снижать выработку ацетата, уменьшая концентрацию водорода в рубце, который будет преобразован в метан. К кормовым стратегиям также относят использование модификаторов - кормовых добавок, которые прямо или косвенно ингибируют метаногенез, и осуществление биологического контроля (дефаунизация, применение препаратов бактериоцинов, бактериофагов, иммунизация), направленные на снижение содержания метаногенов. Ко второй группе стратегий можно отнести повышение продуктивности животных за счет генетических и других факторов. Повышение продуктивности позволит снизить образование метана в организме на единицу продукции (мяса или молока) (M. Islam с соавт., 2019). Применение кормовых факторов различной природы (жировые добавки, органические кислоты, пробиотики, ионофоры, фитогеники) может служить стратегией для снижения метанообразования в организме жвачных (M. Wanapat с соавт., 2021; R.D. Marques с соавт., 2021; S.H. Kim с соавт., 2020). Манипуляции с питанием представляют собой упрощенный и прагматичный подход, который может обеспечить более высокую продуктивность животных и снижение уровня выбросов данного газа (M.D. Najmul с соавт., 2018). В обзоре, наряду с описанием процесса метаногенеза, обобщаются результаты современных исследований по вопросу влияния на образование метана в организме жвачных различных алиментарных факторов (структура и состав рационов, применение фитогеников - сапонинов, танинов, флавоноидов и эфирных масел). Тип рациона, качество объемистых и концентрированных кормов, их химический состав, соотношение, подготовка к скармливанию влияют на выбросы метана в организме жвачных. При этом многообещающим подходом к смягчению выделения метана служит добавление небольшого количества зерна в грубые корма и скармливание кормов высокого качества, использование корма с меньшим содержанием клетчатки и более высоким содержанием растворимых углеводов. Использование фитогеников (кормовых добавок, произведенных из различных ботанических частей растений) - дешевый и экологичный способ снижения образования парниковых газов. Это также положительно влияет на резистентность животных. В литературе представлены довольно немногочисленные работы по изучению in vitro эффективности применения флавоноидов и других вторичных метаболитов растений для снижения эмиссии метана. Полученные результаты вариабельны и зависят от вида фитогеника, его характеристик, рациона животных. Требуется проведение исследований in vivo, в том числе для установления оптимальных дозировок фитогеников, дающих положительные результаты. Актуальным и перспективным представляется комбинирование различных фитогеников. Необходим комплексный подход к снижению газообразования в организме жвачных при одновременном сохранении активности ферментации, процессов переваривания и усвоения питательных веществ кормов.

Еще

Жвачные, парниковые газы, метаногенез, качество рациона, структура рациона, фитогеники, сапонины, танины, флавоноиды, эфирные масла

Короткий адрес: https://sciup.org/142237375

IDR: 142237375   |   DOI: 10.15389/agrobiology.2022.6.1025rus

Список литературы Метанообразование в рубце и методы его снижения с использованием алиментарных факторов (обзор)

  • Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P., Dubash N.K., Edenhofer O., Elgizouli I., Field C.B., For-ster P., Friedlingstein P., Fuglestvedt J., Gomez-Echeverri L., Hallegatte S., Hegerl G., Howden M., Jiang K., Jimenez Cisneroz B., Kattsov V., Lee H., Mach K.J., Marotzke J., Mastrandrea M.D., Meyer L., Minx J., Mulugetta Y., O’Brien K., Oppenheimer M., Pereira J.J., Pichs-Madruga R., Plattner G.-K., Pörtner H.-O., Power S.B., Preston B., Ravindranath N.H., Reisinger A., Riahi K., Rusticucci M., Scholes R., Seyboth K., Sokona Y., Stavins R., Stocker T.F., Tschakert P., van Vuuren D., van Ypserle J.-P. Climate change 2014: synthesis report. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change /R. Pachauri, L. Meyer (eds). Geneva, Switzerland, IPCC, 2014.
  • Islam M., Lee S.S. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Journal of Animal Science and Technology, 2019, 61(3): 122-137 (doi: 10.5187/jast.2019.61.3.122).
  • Skytt T., Nielsen S.N., Jonsson, B.G. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainabil-ity — a case study of Jämtland, Sweden. Ecological Indicators, 2020, 110: 105831 (doi: 10.1016/j.ecolind.2019.105831).
  • Haque M.N. Dietary manipulation: a sustainable way to mitigate methane emissions from rumi-nants. Journal of Animal Science and Technology, 2018, 60(1): 15 (doi: 10.1186/s40781-018-0175-7).
  • Hristov A.N., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Ades-ogan A., Yang W., Tricarico J., Kebreab E., Waghorn G., Dijkstra J., Oosting S. Mitigation of greenhouse gas emissions in livestock production. A review of options for non-CO2 emissions. FAO Animal Production and Health Paper No.177 /P.J. Gerber, B. Henderson, H.P.S. Makkar (eds.). FAO, Rome, 2013.
  • McAllister T.A., Meale S.J., Valle E., Guan L.L., Zhou M., Kelly W.J., Henderson G., Att-wood G.T., Janssen P.H. Ruminant nutrition symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. Journal of Animal Science, 2015, 93(4): 1431-1449 (doi: 10.2527/jas.2014-8329).
  • Sandoval-Pelcastre A.A., Ramírez-Mella M., Rodríguez-Ávila N.L., Candelaria-Martínez B. Árboles y arbustos tropicales con potencial para disminuir la producción de metano en ruminates. Tropical and Subtropical Agroecosystems, 2020, 23(33): 1-16.
  • Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld H. Greenhouse gas emissions from ruminant supply chains — a global life cycle assessment. FAO, Rome, 2013.
  • Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. Tackling climate change through livestock — a global assessment of emissions and mitigation oppor-tunities. FAO, Rome, 2013.
  • Указ Президента РФ от 4 ноября 2020 г. № 666 «О сокращении выбросов парниковых газов». Режим доступа: https://www.garant.ru/products/ipo/prime/doc/74756623. Дата обращения: 22.08.2022.
  • Петрунина И.В., Горбунова Н.А. Системные меры по снижению выбросов парниковых газов в животноводческих хозяйствах. Обзор. Пищевые системы, 2022, 5(3): 202-211 (doi: 10.21323/2618-9771-2022-5-3-202-211).
  • Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 2020, 14(S1): 2-6 (doi: 10.1017/S1751731119003100).
  • Calabrò S. Plant secondary metabolites. In: Rumen microbiology: from evolution to revolution /A.K. Puniya, R. Singh, D.N. Kamra (eds.). Springer, New Delhi, India, 2015: 153-189 (doi: 10.1007/978-81-322-2401-3_11).
  • Rooke J.A., Wallace R.J., Duthie C.A., McKain N., de Souza S.M., Hyslop J.J., Ross D.W., Waterhouse T., Roehe R. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition, 2014, 112(3): 398-407 (doi: 10.1017/S0007114514000932).
  • Cammack K.M., Austin K.J., Lamberson W.R., Conant G.C., Cunningham H.C. Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96(2): 752-770 (doi: 10.1093/jas/skx053).
  • Stewart R.D., Auffret M.D., Warr A., Wiser A.H., Press M.O., Langford K.W., Liachko I., Snel-ling T.J., Dewhurst R.J., Walker A.W., Roehe R., Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications, 2018, 9: 870 (doi: 10.1038/s41467-018-03317-6).
  • De la Fuente G., Yañez-Ruiz D.R., Seradj A.R., Balcells J., Belanche A. Methanogenesis in animals with foregut and hindgut fermentation: a review. Animal Production Science, 2019, 59(12): 2109-2122 (doi: 10.1071/AN17701).
  • Poulsen M., Schwab C., Borg Jensen B., Engberg R.M., Spang A., Canibe N., Højberg O., Milinovich G., Fragner L., Schleper C., Weckwerth W., Lund P., Schramm A., Urich T. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications, 2013, 4(1): 1428 (doi: 10.1038/ncomms2432).
  • Solden L.M., Naas A.E., Roux S., Daly R.A., Collins W.B., Nicora C.D., Purvine S.O., Hoyt D.W., Schückel J., Jørgensen B., Willats W., Spalinger D.E., Firkins J.L., Lipton M.S., Sullivan M.B., Pope P.B., Wrighton K.C. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 2018, 3(11): 1274-1284 (doi: 10.1038/s41564-018-0225-4).
  • Wolin M., Millert L.C., Stewart S. Microbe-microbe interactions. In: The rumen microbial eco-system /P.N. Hobson, S. Stewart (eds.). Springer, Dordrecht, 1997: 467–491 (doi: 10.1007/978-94-009-1453-7_11).
  • Patra A., Park T., Kim M., Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 2017, 8(1): 13 (doi: 10.1186/s40104-017-0145-9).
  • Van Lingen H.J., Plugge C.M., Fadel J.G., Kebreab E., Bannink A., Dijkstra J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE, 2016, 11(10): e0161362 (doi: 10.1371/journal.pone.0161362).
  • Huws S.A., Creevey C.J., Oyama L.B., Mizrahi I., Denman S.E., Popova M., Muñoz-Tamayo R., Forano E., Waters S.M., Hess M., Tapio I., Smidt H., Krizsan S.J., Yáñez-Ruiz D.R., Bel-anche A., Guan L., Gruninger R.J., McAllister T.A., Newbold C.J., Roehe R., Dewhurst R.J., Snelling T.J., Watson M., Suen G., Hart E.H., Kingston-Smith A.H., Scollan N.D., do Prado R.M., Pilau E.J., Mantovani H.C., Attwood G.T., Edwards J.E., McEwan N.R., Morris-son S., Mayorga O.L., Elliott C., Morgavi D.P. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Frontiers in Microbiology, 2018, 9: 2161 (doi: 10.3389/fmicb.2018.02161).
  • Wang M., Wang R., Xie T.Y., Janssen P.H., Sun X.Z., Beauchemin K.A., Tan Z.L., Gao M. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen con-centrations in lactating dairy cows fed different types of carbohydrates. Journal of Nutrition, 2016, 146(9): 1714-1721 (doi: 10.3945/jn.116.232462).
  • Cantalapiedra-Hijar G., Abo-Ismail M., Carstens G.E., Guan L.L., Hegarty R., Kenny D.A., McGee M., Plastow G., Relling A., Ortigues-Marty I. Biological determinants of between-animal variation in feed efficiency of growing beef cattle: Review. Animal, 2018, 12(s2): s321-s335 (doi: 10.1017/S1751731118001489).
  • Ungerfeld E.M. Inhibition of rumen methanogenesis and ruminant productivity: a meta-analysis. Frontiers in Veterinary Science, 2018, 5: 113 (doi: 10.3389/fvets.2018.00113).
  • Zhang Q., Difford G., Sahana G., Lovendahl P., Lassen J., Lund M.S., Guldbrandtsen B., Janss L. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influ-ence methane emission in dairy cows. The ISME Journal, 2020, 14(8): 2019-2033 (doi: 10.1038/s41396-020-0663-x).
  • Broucek J. Production of methane emissions from ruminant husbandry: a review. Journal of En-vironmental Protection, 2014, 5(15): 1482-1493 (doi: 10.4236/jep.2014.515141).
  • Bernier J.N., Undi M., Plaizier J.C., Wittenberg K.M., Donohoe G.R., Ominski K.H. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows over-wintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Canadian Journal of Animal Science, 2012, 92(4): 493-500 (doi: 10.4141/cjas2012-040).
  • Wang S., Pisarcikova J., Kreuzer M., Schwarm A. Utility of an in vitro test with rumen fluid from slaughtered cattle for capturing variation in methane emission potential between cattle types and with age. Canadian Journal of Animal Science, 2017, 98(1): 61-72 (doi: 10.1139/cjas-2016-0238).
  • Dong L., Li B., Diao Q. Effects of dietary forage proportion on feed intake, growth performance, nutrient digestibility, and enteric methane emissions of Holstein heifers at various growth stages. Animals, 2019, 9(10): 725 (doi: 10.3390/ani9100725).
  • Boadi D.A., Wittenberg K.M. Methane production from dairy and beef heifers fed forages differ-ing in nutrient density using the Sulphur hexafluoride (sf6) tracer gas technique. Canadian Journal of Animal Science, 2002, 82(2): 201-206 (doi: 10.4141/A01-017).
  • Shreck A.L., Zeltwanger J.M., Bailey E.A., Jennings J.S., Meyer B.E., Cole N.A. Effects of protein supplementation to steers consuming low-quality forages on greenhouse gas emissions. Journal of Animal Science, 2021, 99(7): skab147 (doi: 10.1093/jas/skab147).
  • Li Z., Liao W., Yang Y., Gao Z., Ma W., Wang D., Cai Z. CH4 and N2O emissions from China’s beef feedlots with ad libitum and restricted feeding in fall and spring seasons. Environmental Re-search, 2015, 138: 391-400 (doi: 10.1016/j.envres.2015.02.0).
  • Warner D., Bannink A., Hatew B., Van Laar H., Dijkstra J. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. Journal of Animal Science, 2017, 95(8): 3687-3699 (doi: 10.2527/jas.2017.1459).
  • Rowe S.J., Hickey S.M., Jonker A., Hess M.K., Janssen P., Johnson T., Bryson B., Knowler K., Pinares-Patino C., Bain W., Elmes S., Young E., Wing J., Waller E., Pickering N., McEwan J.C. Selection for divergent methane yield in New Zealand sheep — a ten-year perspective. Proc. of the 23rd Conf. of the association for the advancement of animal breeding and genetics (AAABG). Armidale, New South Wales, Australia, 2019: 306-309.
  • Короткий В.П., Зайцев В.В., Буряков Н.П., Кучин А.В., Рыжов В.А., Турубанов А.И. Спо-соб снижения метаногенеза у крупного рогатого скота. C1 2777053 (РФ), A 61 K 38/00. ООО Научно-технический центр «Химинвест» (РФ), № 2021137457. Заяв. 16.12.2021. Опубл. 01.08.2022.
  • De Mulder T., Peiren N., Vandaele L., Ruttink T., De Campeneere S., Van de Wiele T., Goos-sens K. Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers. Livestock Science, 2018, 207: 38-44 (doi: 10.1016/j.livsci.2017.11.009).
  • Hristov A.N., Kebreab E., Niu M., Oh J., Bannink A., Bayat A.R., Boland T.M., Brito A.F., Casper D.P., Crompton L.A., Dijkstra J., Eugène M., Garnsworthy P.C., Haque N., Hell-wing A.L.F., Huhtanen P., Kreuzer M., Kuhla B., Lund P., Madsen J., Martin C., Moate P.J., Muetzel S., Muñoz C., Peiren N., Powell J.M., Reynolds C.K., Schwarm A., Shingfield K.J., Storlien T.M., Weisbjerg M.R., Yáñez-Ruiz D.R., Yu Z. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101(7): 6655-6674 (doi: 10.3168/jds.2017-13536).
  • Huhtanen P., Cabezas-Garcia E.H., Utsumi S., Zimmerman S. Comparison of methods to de-termine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, 2015, 98(5): 3394-3409 (doi: 10.3168/jds.2014-9118)
  • Kumar S., Choudhury P.K., Carro M.D., Griffith G.W., Dagar S.S., Puniya M., Calabro S., Ravella S.R., Dhewa T., Upadhyay R.C., Sirohi S.K., Kundu S.S., Wanapat M., Puniya A.K. New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Bi-otechnology, 2014, 98(1): 31-44 (doi: 10.1007/s00253-013-5365-0).
  • Knapp J.R., Laur G.L., Vadas P.A., Weiss W.P., Tricarico J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Jour-nal of Dairy Science, 2014, 97(6): 3231-3261 (doi: 10.3168/jds.2013-7234).
  • Negussie E., de Haas Y., Dehareng F., Dewhurst R.J., Dijkstra J., Gengler N., Morgavi D.P., Soyeurt H., van Gastelen S., Yan T., Biscarini F. Invited review: Large-scale indirect measure-ments for enteric methane emissions in dairy cattle: a review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science, 2017, 100(4): 2433-2453 (doi: 10.3168/jds.2016-12030).
  • Tapio I., Snelling T.J., Strozzi F., Wallace R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 2017, 8(1): 7 (doi: 10.1186/s40104-017-0141-0).
  • Montenegro J., Barrantes E., DiLorenzo N. Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livestock Science, 2016, 193: 45-50 (doi:10.1016/j.livsci.2016.09.0).
  • Chiavegato M.B., Rowntree J.E., Carmichael D., Powers W.J. Enteric methane from lactating beef cows managed with high- and low-input grazing systems. Journal of Animal Science, 2015, 93(3): 1365-1375 (doi: 10.2527/jas.2014-8128).
  • Hatew B. Low emission feed: opportunities to mitigate enteric methane production of dairy cows. Wageningen University, 2015.
  • Molano G., Clark H. The effect of level of intake and forage quality on methane production by sheep. Australian Journal of Experimental Agriculture, 2008, 48(2): 219 (doi: 10.1071/ea07253).
  • Gere J.I., Bualó R.A., Perini A.L., Arias R.D., Ortega F.M., Wulff A.E., Berra G. Methane emission factors for beef cows in Argentina: effect of diet quality. New Zealand Journal of Agri-cultural Research, 2021, 64(2): 260-268 (doi: 10.1080/00288233.2019.1621).
  • Alvarado-Bolovich V., Medrano J., Haro J., Castro-Montoya J., Dickhoefer U., Gómez C. En-teric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livestock Science, 2021, 243: 104385 (doi: 10.1016/j.livsci.2020.1043).
  • Benchaar C., Pomar C., Chiquette J. Evaluation of dietary strategies to reduce methane produc-tion in ruminants: a modelling approach. Canadian Journal of Animal Science, 2001, 81(4): 563-574 (doi: 10.4141/A00-119).
  • Gislon G., Colombini S., Borreani G., Crovetto G.M., Sandrucci A., Galassi G., Rapetti L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. Journal of Dairy Science, 2020, 103(9): 8048-8061 (doi: 10.3168/jds.2019-18134).
  • Beauchemin K.A., Kreuzer M., O’Mara F., McAllister T.A. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 2008, 48(2): 21-27 (doi: 10.1071/EA07199).
  • Wang C., Zhang C., Yan T., Chang S., Zhu W., Wanapat M., Hou F. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2019, 104(1): 22-31 (doi: 10.1111/jpn.13223).
  • Martin C., Morgavi D.P., Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal, 2010, 4(3): 351-365 (doi: 10.1017/S1751731109990620).
  • Albores-Moreno S., Alayón-Gamboa J.A., Ayala-Burgos A.J., Solorio-Sánchez F.J., Aguilar-Pé-rez C.F., Olivera-Castillo L., Ku-Vera J.C. Effects of feeding ground pods of Enterolobium cy-clocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane produc-tion by Pelibuey sheep fed tropical grass. Tropical Animal Health and Production, 2017, 49(4): 857-866 (doi: 10.1007/s11250-017-1275-y).
  • Lovett D., Lovell S., Stack L., Callan J., Finlay M., Conolly J., O’Mara F.P. Effect of forage/con-centrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 2003, 84(2): 135-146 (doi: 10.1016/j.livprodsci.2003.09.010).
  • Beauchemin K.A., McAllister T.A., McGinn S.M. Dietary mitigation of enteric methane from cattle. Perspectives in Agriculture. Veterinary Science, Nutrition and Natural Resources, 2009, 4(035): 1-18 (doi: 10.1079/PAVSNNR20094035).
  • Murphy M.R., Baldwin R.L., Koong L.J. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science, 1982, 55(2): 411-421 (doi: 10.2527/jas1982.552411x).
  • Orskov E.R. Starch digestion and utilization in ruminants. Journal of Animal Science, 1986, 63(5): 1624-1633 (doi: 10.2527/jas1986.6351624x).
  • Hindrichsen I.K., Kreuzer M. High methanogenic potential of sucrose compared with starch at high ruminal ph. Journal of Animal Physiology and Animal Nutrition, 2009, 93(1): 61-65 (doi: 10.1111/j.1439-0396.2007.00779.x).
  • Beauchemin K.A., McGinn S.M., Benchaar C., Holtshausen L. Crushed sunflower, flax, or can-ola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, 2009, 92(5): 2118-2127 (doi: 10.3168/jds.2008-1903).
  • Llonch P., Haskel M.J., Dewhurs R.J., Turner S.P. Current available strategies to mitigate green-house gas emissions in livestock systems: An animal welfare perspective. Animal, 2017, 11(2): 274-284 (doi: 10.1017/S1751731116001440).
  • Patra A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. Livestock Science, 2013, 155(2-3): 244-254 (doi: 10.1016/j.livsci.2013.05.023).
  • Шейда Е.В., Лебедев С.В., Мирошников С.А., Дускаев Г.К., Рязанов В.А., Гречкина В.В., Рахматуллин Ш.Г. Влияние дополнительного введения льняного масла на изменение мик-робиома рубца крупного рогатого скота. Животноводство и кормопроизводство, 2021, 104(2): 84-95 (doi: 10.33284/2658-3135-104-2-84).
  • Wanapat M., Viennasay B., Matra M., Totakul P., Phesatcha B., Ampapon T., Wanapat S. Sup-plementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. Journal of the Science of Food and Agriculture, 2021, 101(11): 4543-4550 (doi: 10.1002/jsfa.11096).
  • Marques R.D., Cooke R.F. Effects of ionophores on ruminal function of beef cattle. Animals, 2021, 11(10): 2871 (doi: 10.3390/ani11102871).
  • Appuhamy J.R., Strathe A.B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J., Ke-breab E. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science, 2013, 96(8): 5161-5173 (doi: 10.3168/jds.2012-5923).
  • Pedraza-Hernández J., Elghandour M.M.M.Y., Khusro A., Camacho-Diaz L.M., Vallejo L.H., Barbabosa-Pliego A., Salem A.Z.M. Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. Journal of Cleaner Production, 2019, 234: 779-786 (doi: 10.1016/j.jclepro.2019.06).
  • Kim S.H., Mamuad L.L., Islam M., Lee S.S. Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows. Journal of Animal Science and Technology, 2020, 62(1): 1-13 (doi: 10.5187/jast.2020.62.1.1).
  • Abdelbagi M., Ridwan R., Fidriyanto R., Rohmatussolihat, Nahrowi, Jayanegara A. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 788: 012050 (doi: 10.1088/1755-1315/788/1/012050).
  • Guo G., Shen C., Liu Q., Zhang S.L., Shao T., Wang C., Wang Y., Xu Q., Huo W. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture, 2020, 19(3): 838-847 (doi: 10.1016/S2095-3119(19)62707-3).
  • Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M., Morgavi D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. Journal of Animal Science and Biotechnology, 2019, 10: 41 (doi: 10.1186/s40104-019-0342-9).
  • Latham E.A., Pinchak W.E., Trachsel J., Allen H.K., Callaway T.R., Nisbet D.J., Anderson R.C. Paenibacillus 79R4, a potential rumen probiotic to enhance nitrite detoxification and methane mitigation in nitrate-treated ruminants. Science of The Total Environment, 2019, 671: 324-328 (doi: 10.1016/j.scitotenv.2019).
  • Deng K.D., Xiao Y., Ma T., Tu Y., Diao Q.Y., Chen Y.H., Jiang J.J. Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Animal Feed Science and Technology, 2018, 241: 38-44 (doi: 10.1016/j.anifeedsci.2018).
  • Партнерский материал. Фитогеники: настоящее и будущее. Агроинвестор, 30 апреля 2019. Режим доступа: https://www.agroinvestor.ru/business-pages/31677-fitogeniki-nastoyashchee-i-budushchee/. Без даты.
  • Kaur N., Agarwal A., Sabharwal M., Jaiswal N. Natural food toxins as anti-nutritional factors in plants and their reduction strategies. In: Food chemistry /M. Sen (еd.), Scrivener Publishing LLC, 2021: 217-248 (doi: 10.1002/9781119792130.ch8).
  • Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal of Dairy Science, 2019, 102(5): 3781-3804 (doi: 10.3168/jds.2018-14985).
  • De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Veterinary Re-search, 2016, 12(1): 2074161 (doi: 10.1186/s12917-016-0653-4).
  • Aboagye I.A., Oba M., Koenig K.M., Zhao G.Y., Beauchemin K.A. Use of gallic acid and hy-drolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. Journal of Animal Science, 2019, 97(5): 2230-2244 (doi: 10.1093/jas/skz101).
  • Ngámbi J.W., Selapa M.J., Brown D., Manyelo T.G. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet. Tropical Animal Health and Production, 2022, 54(5): 263 (doi: 10.1007/s11250-022-03268-7).
  • Suybeng B., Charmley E., Gardiner C.P., Malau-Aduli B.S., Malau-Aduli A.E.O. Supplementing Northern Australian beef cattle with desmanthus tropical legume reduces in-vivo methane emis-sions. Animals (Basel), 2020, 10(11): 2097 (doi: 10.3390/ani10112097).
  • Ku-Vera J.C., Jiménez-Ocampo R., Valencia-Salazar S.S., Montoya-Flores M.D., Molina-Bo-tero I.C., Arango J., Gómez-Bravo C.A., Aguilar-Pérez C.F., Solorio-Sánchez F.J. Role of sec-ondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Sci-ence, 2020, 7: 584 (doi: 10.3389/fvets.2020.00584).
  • Min B.R., Pinchak W.E., Hume M.E., Anderson R.C. Effects of condensed tannins supplemen-tation on animal performance, phylogenetic microbial changes, and in vitro methane emissions in steers grazing winter wheat. Animals (Basel), 2021, 11(8): 2391 (doi: 10.3390/ani11082391).
  • Jayanegara A., Goel G., Makkar H.P.S., Becker K. Reduction in methane emissions from rumi-nants by plant secondary metabolites: effects of polyphenols and saponins. In: Sustainable im-provement of animal production and health /N.E. Odongo, M. Garcia, G.J. Viljoen (eds). FAO, Rome, Italy, 2010: 151-157.
  • Jayanegara A., Leiber F., Kreuzer M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 2012, 96(3): 365-375 (doi: 10.1111/j.1439-0396.2011.01172.x).
  • Min B.R., Solaiman S. Comparative aspects of plant tannins on digestive physiology, nutrition and microbial changes in sheep and goats: a review. Journal of Animal Physiology and Animal Nutrition, 2018, 102(5): 1181-1193 (doi: 10.1111/jpn.12938).
  • Goel C., Makkar H.P.S., Becker K. Methane mitigation from ruminants using tannins and sap-onins. Tropical Animal Health and Production, 2011, 44(4): 729-739 (doi: 10.1007/s11250-011-9966-2).
  • Naumann H.D., Tedeschi L.O., Zeller W.E., Huntley N.F. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 2017, 46: 929-949 (doi: 10.1590/s1806-92902017001200009).
  • Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 2009, 92(11): 5512-5522 (doi: 10.3168/jds.2008-1441).
  • Jayanegara A., Goel G., Makkar H.P.S., Becker K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 2015, 209: 60-68 (doi: 10.1016/j.anifeedsci.2015.08.002).
  • Mannelli F., Daghio M., Alves S.P., Bessa R.J., Minieri S., Giovannetti L., Conte G., Mele M., Messini A., Rapaccini S., Viti C., Buccioni A. Effects of chestnut tannin extract, vescalagin and gallic acid on the dimethyl acetals profile and microbial community composition in rumen liquor: an in vitro study. Microorganisms, 2019, 7(7): 202 (doi: 10.3390/microorganisms707020).
  • Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, 2006, 86(13): 2010-2037 (doi: 10.1002/jsfa.2577).
  • Costa M., Alves S.P., Cabo Â., Guerreiro O., Stilwell G., Dentinho M.T., Bessa R.J. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. Journal of the Science of Food and Agriculture, 2017, 97(2): 629-635 (doi: 10.1002/jsfa.7777).
  • Waghorn G.C., Woodward S.L. Ruminant contributions to methane and global warming — a New Zealand perspective. In: Climate change and managed ecosystems /J.S. Bhatti, R. Lal, M.J. Apps, M.A. Price (eds.). Taylor and Francis, Boca Raton, 2006: 233-261.
  • Woodward S.L., Waghorn G.C., Ulyatt M.J., Lassey K.R. Early indication that feeding lotus will reduce methane emission from ruminants. Proceedings of New Zealand Society of Animal Produc-tion, 2001, 61: 23-26.
  • Puchala R., Min B.R., Goetsch A.L., Sahlu T. The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, 2005, 83(1): 182-186 (doi: 10.2527/2005.831182x).
  • Carulla J.E., Kreuzer M., Machmüller A., Hess H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricul-tural Research, 2005, 56(9): 961-970 (doi: 10.1071/AR05022).
  • Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H., Wells J. Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza. Animal Feed Science and Technology, 2008, 144: 212-227 (doi: 10.1016/j.anifeedsci.2007.10.014).
  • Tiemann T.T., Lascano C.E., Wettstein H.R., Mayer A.C., Kreuzer M., Hess H.D. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, 2008, 2(5): 790-799 (doi: 10.1017/S1751731108001791).
  • De Oliveira S.G., Berchielli T.T., Pedreira M.D.S., Primavesi O., Frighetto R., Lima M.A. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, 2007, 135(3-4): 236-248 (doi: 10.1016/j.anifeedsci.2006.07.012).
  • Grainger C., Clarke T., Auldist M.J., Beauchemin K.A., McGinn S.M., Waghorn G.C. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science, 2009, 89(2): 241-251 (doi: 10.4141/CJAS08110).
  • Patra A.K., Kamra D.N., Bhar R., Kumar R., Aggarwal N. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. Journal of Animal Physiology and Animal Nutrition, 2011, 95(2): 187-191 (doi: 10.1111/j.1439-0396.2010.01039.x).
  • Santoso B., Mwenya B., Sar C., Gamo Y., Kobayashi T., Morikawa R., Kimura K., Mizuko-shi H., Takahashi J. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livestock Production Sci-ence, 2004, 91(3): 209-217 (doi: 10.1016/j.livprodsci.2004.08.004).
  • Kozłowska M., CieŚlak A., JóŹwik A., El‐Sherbiny M., Stochmal A., Oleszek W., Kowalczyk M., Filipiak W., Szumacher‐Strabel M. The effect of total and individual alfalfa saponins on rumen methane production. Journal of the Science of Food and Agriculture, 2019, 100(5): 1922-1930 (doi: 10.1002/jsfa.10204).
  • Kang J., Zeng B., Tang S., Wang M., Han X., Zhou C., Yan Q., He Z., Liu J., Tan Z. Effects of Momordica charantia saponins on in vitro ruminal fermentation and microbial population. Asian-Australasian Journal of Animal Sciences, 2016, 29(4): 500-508 (doi: 10.5713/ajas.15.0402).
  • Canul-Solis J.R., Piñeiro-Vazquez A.T., Chay-Canul A.J., Castillo-Sánchez L.E., Alayón-Gam-boa J.A., Ayala-Burgos A.J., Aguilar-Pérez A.J., Pedraza-Beltran, Castelan-Ortega O.A., Ku-Vera J.C. Effect of the source and concentration of saponins on in vitro and ruminal methane produc-tion. Archivos de Zootecnia, 2019, 68(263): 362-369 (doi: 10.21071/az.v68i263.4194).
  • Wang B., Ma M.P., Diao Q.Y., Tu Y. Saponin-induced shifts in the rumen microbiome and metab-olome of young cattle. Frontiers in Microbiology, 2019, 10: 356 (doi: 10.3389/fmicb.2019.00356).
  • Wu H., Meng Q., Zhou Z., Yu Z. Ferric citrate, nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations. Journal of Applied Microbiology, 2019, 127(1): 150-158 (doi: 10.1111/jam.14286).
  • Guyader J., Eugène M., Doreau M., Morgavi D.P., Gérard C., Martin C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 2017, 100(3): 1845-1855 (doi: 10.3168/jds.2016-11644).
  • Wallace R., McEwan N.R., McIntosh F.M., Teferedegne B., Newbold C.J. Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 2002, 15(10): 1458-1468 (doi: 10.5713/ajas.2002.145).
  • Chen R.J., Chung T., Li F., Lin N., Tzen J.T. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacologica Sinica, 2009, 30(1): 61-69 (doi: 10.1038/aps.2008.6).
  • Ramos-Morales E., Arco-Pérez A., Martín-García A.I., Yáñez-Ruiz D.R., Frutos P., Hervás G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Animal Feed Science and Technology, 2014, 198: 57-66 (doi: 10.1016/j.anifeedsci.2014.09.016).
  • Guo Y.Q., Liu J.X., Lu Y., Zhu W.Y., Denman S.E., McSweeney C.S. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of ru-men micro-organisms. Letters in Applied Microbiology, 2008, 47(5): 421-426 (doi: 10.1111/j.1472-765X.2008.02459.x).
  • Pen B., Sar C., Mwenya B., Kuwaki K., Morikawa R., Takahashi J. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Animal Feed Science and Technology, 2006, 129: 175-186 (doi: 10.1016/j.anifeedsci.2006.11.018).
  • Holtshausen L., Chaves A.V., Beauchemin K.A., McGinn S.M., McAllister T., Odongo N.E., Cheeke P.R., Benchaar C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, 2009, 92(6): 2809-2821 (doi: 10.3168/jds.2008-1843).
  • Mao H., Wang J., Zhou Y., Liu J. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Animal Feed Science and Technology, 2010, 129(1-3): 56-62 (doi: 10.1016/j.livsci.2009.12.011).
  • Zhou Y.Y., Mao H.L., Jiang F., Wang J.K., Liu J.X., McSweeney C.S. Inhibition of rumen meth-anogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Animal Feed Science and Technology, 2011, 166: 93-100 (doi: 10.1016/j.anifeedsci.2011.04.007).
  • Sliwinski B.J., Kreuzer M., Wettstein H.R., Machmuller A. Rumen fermentation and nitrogen balance of lambs fed diets containing plantextracts rich in tannins and saponins and associated emissions of nitrogen and methane. Archieves of Animal Nutrition, 2002, 56(6): 379-392 (doi: 10.1080/00039420215633).
  • Molina-Botero I.C., Arroyave-Jaramillo J., Valencia-Salazar S., Barahona-Rosales R., Aguilar-Pérez C.F., Ayala Burgos A., Jacobo A., Ku-Vera J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Tech-nology, 2019, 251: 1-11 (doi: 10.1016/j.anifeedsci.2019.01.011).
  • Montoya-Flores M.D., Molina-Botero I.C., Arango J., Romano-Muñoz J.L., Solorio-Sánchez F.J., Aguilar-Pérez C.F., Ku-Vera J.C. Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in cross-bred heifers. Animals, 2020, 10(2): 300 (doi: 10.3390/ani10020300).
  • Molina I.C., Angarita E.A., Mayorga O.L., Chará J., Barahona-Rosales R. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostach-yus. Livestock Science, 2016, 185: 24-29 (doi: 10.1016/j.livsci.2016.01.009).
  • Valencia Salazar S.S., Piñeiro Vázquez A.T., Molina Botero I.C., Lazos Balbuena F.J., Uuh Narváez J.J., Segura Campos M.R., Avilés L.R., Solorio Sánchez F.J., Ku Vera J.C. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology, 2018, 258: 108-116 (doi: 10.1016/j.agrformet.2017.12.262).
  • Yejun L., Su Kyoung L., Shin Ja L., Jong‐Su E., Sung Sill L. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. Animal Science Journal, 2019, 90(9): 1170-1176 (doi: 10.1111/asj.13259).
  • Моисеева Е.А., Кравченко И.В., Шепелева Л.Ф., Бордей Р.Х. Накопление фотосин-тетических пигментов и вторичных метаболитов в листьях галеги (Galega orientalis Lam.) сорта Гале в зависимости от возраста травостоя и агротехнологии при интродукции в зоне Средней тайги Западной Сибири. Сельскохозяйственная биология, 2022, 57(1): 44-65 (doi: 10.15389/agrobiology.2022.1.44rus).
  • Olagaray K.E., Bradford B.J. Plant flavonoids to improve productivity of ruminants — a review. Animal Feed Science and Technology, 2019, 251: 21-36 (doi: 10.1016/j.anifeedsci.2019.02.004).
  • Oskoueian E., Abdullah N., Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Research International, 2013, 2013: ID 349129 (doi: 10.1155/2013/349129).
  • Seradj A.R., Abecia L., Crespo J., Villalba D., Fondevila M., Balcells J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Animal Feed Science and Technology, 2014, 197: 85-91 (doi: 10.1016/j.anifeedsci.2014.08.013).
  • Zhan J., Liu M., Su X., Zhan K., Zhang C., Zhao G. Effects of alfalfa flavonoids on the pro-duction performance, immune system, and ruminal fermentation of dairy cows. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1416-1424 (doi: 10.5713/ajas.16.0579).
  • Sinz S, Kunz C., Liesegang A., Braun U., Marquardt S., Soliva C.R., Kreuzer M. In vitro bio-activity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech Journal of Animal Science, 2018, 63: 293-304 (doi: 10.17221/118/2017-CJAS)
  • Ahmed E., Fukuma N., Hanada M., Nishida T. The efficacy of plant-based bioactives supple-mentation to different proportion of concentrate diets on methane production and rumen fer-mentation characteristics in vitro. Animals, 2021, 11(4): 1029 (doi: 10.3390/ani11041029).
  • Нуржанов Б.С., Рязанов В.А., Шейда Е.В., Дускаев Г.К., Рахматуллин Ш.Г. Способ снижения концентрации метана в рубце жвачных животных. C1 2780832 (РФ), A23K 10/30, A23K 50/10, 04.10.2022. Федеральное государственное бюджетное научное учреждение «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» (РФ). № 2022106708. Заявл. 15.03.2022. Опубл. 04.10.2022.
  • Бальсельс Терес Ж., Креспо Монтеро Ф.Ш. Способ снижения метаногенеза у жвачных животных. C1 2576195 (РФ). № 2014146434/13. Заявл. 18.04.2013. Опубл. 27.02.2016.
  • Hu Q., Zhou M., We, S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. Journal of Food Science, 2018, 83(6): 1476-1483 (doi: 10.1111/1750-3841.14180).
  • Benchaar C., Greathead H. Essential oils and opportunities to mitigate enteric methane emis-sions from ruminants. Animal Feed Science and Technology, 2011, 166-167: 338-355 (doi: 10.1016/j.anifeedsci.2011.04.024).
  • Zhou X., Zhang N., Zhang J., Gu Q., Dong C., Lin B., Zou C. Microbiome and fermentation parameters in the rumen of dairy buffalo in response to ingestion associated with a diet supple-mented with cysteamine and hemp seed oil. Journal of Animal Physiology and Animal Nutrition, 2022, 106(3): 471-484 (doi: 10.1111/jpn.13616).
  • Joch M., Mrázek J., Skřivanová E., Čermák L., Marounek M. Effects of pure plant secondary me-tabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. Jour-nal of Animal Physiology and Animal Nutrition, 2018, 102(4): 869-881 (doi: 10.1111/jpn.12910).
  • Zeng Z., Sheng P., Zhang H., He L., Huang J., Wang D., Gui G.The effect of Macleaya cordata extract on in vitro ruminal fermentation and methanogenesis. Food Science & Nutrition, 2021, 9(8): 4561-4567 (doi: 10.1002/fsn3.2436).
  • Petrič D., Mravčáková D., Kucková K., Čobanová K., Kišidayová S., Cieslak A., Ślusarczyk S., Váradyová Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. Journal of Animal Phys-iology and Animal Nutrition, 2020, 104(5): 1219-1232 (doi: 10.1111/jpn.13349).
  • Yu J., Cai L., Zhang J., Yang A., Wang Y., Zhang L., Guan L.L., Qi D. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms, 2020, 8(8): 1160 (doi: 10.3390/microorganisms8081160).
  • Rossi C.A.S., Grossi S., Dell’Anno M., Compiani R., Rossi L. Effect of a blend of essential oils, bioflavonoids and tannins on in vitro methane production and in vivo production efficiency in dairy cows. Animals, 2022, 12(6): 728 (doi: 10.3390/ani12060728).
  • Castro-Montoya J., Peiren N., Cone J.W., Zweifel B., Fievez V., De Campeneere S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livestock Science, 2015, 180: 134-142 (doi: 10.1016/j.livsci.2015.08.010).
  • Hart K., Jones, H., Waddams K., Worgan H., Zweifel B., Newbold C. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open Journal of Animal Sciences, 2019, 9(03): 259-267 (doi: 10.4236/ojas.2019.93022).
  • Klop G., Dijkstra J., Dieho K., Hendriks W.H., Bannink A. Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. Journal of Dairy Science, 2017, 100(5): 3563-3575 (doi: 10.3168/jds.2016-12033).
  • Рахматуллин Ш.Г., Нуржанов Б.С., Дускаев Г.К., Кван О.В., Шейда Е.В. Влияние расти-тельных экстрактов на метагеном рубца. Животноводство и кормопроизводство, 2021, 3(104): 94-103 (doi: 10.33284/2658-3135-104-3-94).
  • Alves T.P., Dall-Orsoletta A.C., Ribeiro-Filho H.M.N. The effects of supplementing acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Tropical Animal Health and Production, 2017, 49(8): 1663-1668 (doi: 10.1007/s11250-017-1374-9).
  • Chen D., Chen X., Tu Y., Wang B., Lou C., Ma T., Diao Q. Effects of mulberry leaf flavonoid and resveratrol on methane emission and nutrient digestion in sheep. Animal Nutrition, 2015, 1(4): 362-367 (doi: 10.1016/j.aninu.2015.12.008).
  • Dey A., Attri K., Dahiya S.S., Paul S.S. Influence of dietary phytogenic feed additives on lactation performance, methane emissions and health status of Murrah buffaloes (Bubalus bubalis). Journal of the Science of Food and Agriculture, 2021, 101(10): 4390-4397 (doi: 10.1002/jsfa.11080).
  • Van Gastelen S., Dijkstra J., Bannink A. Are dietary strategies to mitigate enteric methane emis-sion equally effective across dairy cattle, beef cattle, and sheep? Journal of Dairy Science, 2019, 102(7): 6109-6130 (doi: 10.3168/jds.2018-15785).
  • Boadi D.A., Wittenberg K.M., Scott S.L., Burton D., Buckley K., Small J.A., Ominski K.H. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Canadian Journal of Animal Science, 2004, 84(3): 445-453 (doi: 10.4141/a03-079).
Еще
Статья обзорная