Method for assessing the reliability of earth dams in irrigation systems

Автор: Sultanov Karim Sultanovich, Khusanov Bakhtiyar, Loginov Pavel Viktorovich, Normatov Sh.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (89), 2020 года.

Бесплатный доступ

Irrigation systems for irrigated agriculture begin with reservoirs and basins. The latter are formed with earth dams and levees. The reliability and stability of earth dams under static and especially dynamic loading is of paramount importance. Destruction of dam structures, reservoirs, can lead to disastrous environmental and economic losses. The methods and ways to ensure the reliability of earth dams are different. Under static (own weight, water pressure) and dynamic (vibrations, explosions, earthquakes) loads, the strength and stability of earth dams are calculated at the stages of their design. In this case, it is necessary to determine the failure surfaces (surfaces of possible collapse) of the dam slopes. The circular cylindrical method for finding the failure surface (surfaces of collapse) of slopes of a homogeneous earth dam under static (own weight) loading is considered in the paper. It is shown that when the value of the total stability coefficient is greater than unity, there are local sections of the slip line where stability is violated. This circumstance creates the possibility for a fracture line development under seismic loads. It is proposed to take into account seismic stresses in the soil mass based on the solution of basic equations of continuum mechanics. The numerical solution of wave equations for the soil mass is presented by the finite difference method with known boundary conditions and zero initial conditions. The dynamic stress-strain state of earth dam is determined taking into account its moisture content and elastic, viscous, and plastic properties of soil. The ways of considering dynamic stress state when calculating the reliability and stability of earth dams are shown.

Еще

Reservoirs, earth dam, reliability, stability, seismic impact, stress state, numerical solutions

Короткий адрес: https://sciup.org/143172521

IDR: 143172521   |   DOI: 10.18720/CUBS.89.1

Список литературы Method for assessing the reliability of earth dams in irrigation systems

  • Pang, R., Xu, B., Kong, X., Zou, D., Zhou, Y. Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method. Soil Dynamics and Earthquake Engineering. 2018. 107. Pp. 96-107. 10.1016/j.soildyn.2018.01.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726117309235. DOI: 10.1016/j.soildyn.2018.01.020.URL
  • Fu, Z., Zhang, Y., Chen, S. Discussion on "Seismic reliability assessment of earth-rockfill dam slopes considering strain- softening of rockfill based on generalized probability density evolution method" by R. Pang et al. [Soil Dyn Earthq Eng 107 (2018) 96-107]. Soil Dynamics and Earthquake Engineering. 2018. 115. Pp. 943-944. 10.1016/j.soildyn.2018.05.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118304688. DOI: 10.1016/j.soildyn.2018.05.003.URL
  • Fu, Z., Zhang, Y., Chen, S. Discussion on "Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method" by R. Pang et al. [Soil Dyn Earthq Eng 107 (2018) 96-107]. Soil Dynamics and Earthquake Engineering. 2018. 115. Pp. 945-946. 10.1016/j.soildyn.2018.07.026. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118302707. DOI: 10.1016/j.soildyn.2018.07.026.URL
  • Xu, B., Pang, R., Kong, X. Response to the discussion on "Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method". Soil Dynamics and Earthquake Engineering. 2018. 115. Pp. 947-948. 10.1016/j.soildyn.2018.07.027. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118307346. DOI: 10.1016/j.soildyn.2018.07.027.URL
  • Mirsaidov, M. An account of the foundation in assessment of earth structure dynamics. E3S Web of Conferences. 2019. 97. Pp. 04015. 10.1051/e3sconf/20199704015. URL: https://www.e3sconferences.org/10.1051/e3sconf/20199704015. DOI: 10.1051/e3sconf/20199704015.URL
  • Xie, Q., Liu, J., Han, B., Li, H., Li, Y., Jiang, Z. Experimental investigation of interfacial erosion on culvert-soil interface in earth dams. Soils and Foundations. 2019. 59(3). Pp. 671-686. 10.1016/j.sandf.2019.02.004. URL: https://linkinghub.elsevier.com/retrieve/pii/S003808061930037X.
  • DOI: 10.1016/j.sandf.2019.02.004.URL
  • Rampello, S., Cascone, E., Grosso, N. Evaluation of the seismic response of a homogeneous earth dam. Soil Dynamics and Earthquake Engineering. 2009. 29(5). Pp. 782-798. 10.1016/j.soildyn.2008.08.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726108001371.
  • DOI: 10.1016/j.soildyn.2008.08.006.URL
  • Yazdani, Y., Alembagheri, M. Nonlinear seismic response of a gravity dam under near-fault ground motions and equivalent pulses. Soil Dynamics and Earthquake Engineering. 2017. 92. Pp. 621-632. 10.1016/j.soildyn.2016.11.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726116304857.
  • DOI: 10.1016/j.soildyn.2016.11.003.URL
  • VahidiFard, H., Zafarani, H., Sabbagh-Yazdi, S.R., Hadian, M.A. Seismic hazard analysis using simulated ground-motion time histories: The case of the Sefidrud dam, Iran. Soil Dynamics and Earthquake Engineering. 2017. 99. Pp. 20-34. 10.1016/j.soildyn.2017.04.017. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726116301762.
  • DOI: 10.1016/j.soildyn.2017.04.017.URL
  • Yiagos, A.N., Prevost, J.H. Two-phase elasto-plastic seismic response of earth dams: theory. Soil Dynamics and Earthquake Engineering. 1991. 10(7). Pp. 357-370. 10.1016/02677261(91)90025-U. URL: https://linkinghub.elsevier.com/retrieve/pii/026772619190025U.
  • DOI: 10.1016/02677261(91)90025-U.URL
  • Chen, K., Zou, D., Kong, X. A nonlinear approach for the three-dimensional polyhedron scaled boundary finite element method and its verification using Koyna gravity dam. Soil Dynamics and Earthquake Engineering. 2017. 96. Pp. 1-12. 10.1016/j.soildyn.2017.01.028. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726116304328.
  • DOI: 10.1016/j.soildyn.2017.01.028.URL
  • Wang, C., Hawlader, B., Islam, N., Soga, K. Implementation of a large deformation finite element modelling technique for seismic slope stability analyses. Soil Dynamics and Earthquake Engineering. 2019. 127. Pp. 105824. 10.1016/j.soildyn.2019.105824. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726117303548.
  • DOI: 10.1016/j.soildyn.2019.105824.URL
  • Zugic, Z., Sesov, V., Garevski, M., Vukićević, M., Jockovic, S. Simplified method for generating slope seismic deformation hazard curve. Soil Dynamics and Earthquake Engineering. 2015. 69. Pp. 138-147. 10.1016/j.soildyn.2014.10.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726114002073.
  • DOI: 10.1016/j.soildyn.2014.10.005.URL
  • Song, L., Xu, B., Kong, X., Zou, D., Pang, R., Yu, X., Zhang, Z. Three-dimensional slope dynamic stability reliability assessment based on the probability density evolution method. Soil Dynamics and Earthquake Engineering. 2019. 120. Pp. 360-368. 10.1016/j.soildyn.2019.02.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118307437.
  • DOI: 10.1016/j.soildyn.2019.02.006.URL
  • Sanchez Lizarraga, H., Lai, C.G. Effects of spatial variability of soil properties on the seismic response of an embankment dam. Soil Dynamics and Earthquake Engineering. 2014. 64. Pp. 113-128. 10.1016/j.soildyn.2014.03.016. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726114000785.
  • DOI: 10.1016/j.soildyn.2014.03.016.URL
  • Zou, D., Han, H., Ling, H.I., Zhou, Y., Liu, J. An approach for the real-time slip deformation coupled with strain softening of a high rockfill dam subjected to pulse-like ground motions. Soil Dynamics and Earthquake Engineering. 2019. 117. Pp. 30-46. 10.1016/j.soildyn.2018.10.044. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118305359.
  • DOI: 10.1016/j.soildyn.2018.10.044.URL
  • Joh, S.-H., Park, D., Magno, K., Lee, J.-H. Stress-based velocity correction for evaluating the shear-wave velocity of the earth core of a rockfill dam. Soil Dynamics and Earthquake Engineering. 2019. 126. Pp. 105785. 10.1016/j.soildyn.2019.105785. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726118303816.
  • DOI: 10.1016/j.soildyn.2019.105785.URL
  • Mortazavi Zanjani, M., Soroush, A., Khoshini, M. Two-dimensional numerical modeling of fault rupture propagation through earth dams under steady state seepage. Soil Dynamics and Earthquake Engineering. 2016. 88. Pp. 60-71. 10.1016/j.soildyn.2016.05.012. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726116300537.
  • DOI: 10.1016/j.soildyn.2016.05.012.URL
  • Park, D.S., Kim, N.-R. Safety evaluation of cored rockfill dams under high seismicity using dynamic centrifuge modeling. Soil Dynamics and Earthquake Engineering. 2017. 97. Pp. 345-363. 10.1016/j.soildyn.2017.03.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726117302610.
  • DOI: 10.1016/j.soildyn.2017.03.020.URL
  • Yuan, L., Liu, X., Wang, X., Yang, Y., Yang, Z. Seismic performance of earth-core and concrete-faced rock-fill dams by large-scale shaking table tests. Soil Dynamics and Earthquake Engineering. 2014. 56. Pp. 1-12. 10.1016/j.soildyn.2013.09.019. URL: https://linkinghub.elsevier.com/retrieve/pii/S0267726113002121.
  • DOI: 10.1016/j.soildyn.2013.09.019.URL
  • Shinoda, M. Seismic stability and displacement analyses of earth slopes using non-circular slip surface. Soils and Foundations. 2015. 55(2). Pp. 227-241. 10.1016/j.sandf.2015.02.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0038080615000219.
  • DOI: 10.1016/j.sandf.2015.02.001.URL
  • Mirsaidov, M.M., Abdikarimov, R.A., Khodzhaev, D.A. Dynamics of a viscoelastic plate carrying concentrated mass with account of physical nonlinearity of material. Part 1. Mathematical model, solution method and computational algorithm. PNRPU Mechanics Bulletin. 2019. (2). 10.15593/perm.mech/2019.2.11. Mirsaidov, M.M., Sultanov, T.Z. Use of linear heredity theory of viscoelasticity for dynamic analysis of earthen structures. Soil Mechanics and Foundation Engineering. 2013. 49(6). Pp. 250-256. 10.1007/s11204-013-9198-8. URL: http://link.springer.com/10.1007/s11204-013-9198-8.
  • DOI: 10.15593/perm.mech/2019.2.11.Mirsaidov
  • Sultanov, T.Z., Khodzhaev, D.A., Mirsaidov, M.M. The Assessment of Dynamic Behavior of Heterogeneous Systems taking into account Non-linear Viscoelastic Properties of Soil. Magazine of Civil Engineering. 2014. 45(1). Pp. 80-89. 10.5862/MCE.45.9. URL: http://www.engstroy.spb.ru/index_2014_01/09.pdf.
  • DOI: 10.5862/MCE.45.9.URL
  • Mirsaidov, M.M., Sultanov, T.Z., Khodzhaev, D.A. Assessment of the Stress-Strain State of Earth Dams. Civil-Comp Proceedings. 2012. 10.4203/ccp.100.108. URL: http://www.ctresources.info/ccp/paper.html?id=7248.
  • DOI: 10.4203/ccp.100.108.URL
  • Sultanov, K.S., Khusanov, B.É. State equations for soils prone to slump-type settlement with allowance for degree of wetting. Soil Mechanics and Foundation Engineering. 2001. 38(3). Pp. 80-86. :1017942731297.
  • DOI: 10.1023/A
  • Sultanov, K.S., Khusanov, B.É. Determination of the slump-type settlement of a nonlinearly deformable soil mass during wetting. Soil Mechanics and Foundation Engineering. 2002. 39(3). Pp. 81- 84. :1020329100803.
  • DOI: 10.1023/A
  • Sultanov, K.S., Khusanov, B.E. Slump-type soils statement equations with moistening consideration. Osnovaniya, Fundamenty i Mekhanika Gruntov. 2001. (3). Pp. 7-12. (rus)
  • Sultanov, K.S., Khusanov, V.E. Estimate of subsidence of nonlinear deformable soil massif while moistening. Osnovaniya, Fundamenty i Mekhanika Gruntov. 2002. (3). Pp. 2-5. (rus)
  • Murakami, A., Wakai, A., Fujisawa, K. Numerical Methods. Soils and Foundations. 2010. 50(6). Pp. 877-892. 10.3208/sandf.50.877. URL: https://linkinghub.elsevier.com/retrieve/pii/S003808062030202X.
  • DOI: 10.3208/sandf.50.877.URL
  • Khusanov, B., Khaydarova, O. Stress-strain state of earth dam under harmonic effect. E3S Web of Conferences. 2019. 97. Pp. 05043. 10.1051/e3sconf/20199705043. URL: https://www.e3sconferences.org/10.1051/e3sconf/20199705043.
  • DOI: 10.1051/e3sconf/20199705043.URL
Еще
Статья научная