Methodological Substantiation of the choice for a stabilizer for bismuth titanate fine particles suspensions

Автор: Svetlana V. Samchenko, Irina V. Kozlova, Olga V. Zemskova, Marina O. Dudareva

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Building materials science

Статья в выпуске: 2 Vol.15, 2023 года.

Бесплатный доступ

Introduction. The current stage of the construction industry and building materials science development involves the introduction and widespread application of nano- and fine particles capable of improving the properties of traditional materials. However, it is necessary to provide stabilization of nano- and fine-dispersed components in the cement system. Plasticizing additives can be used as stabilizers. It is important to set their concentration. Therefore, the purpose of this study is outlined, which lays in the methodological substantiation the stabilizing effect of various types of plasticizers on the suspension of fine synthetic bismuth titanate used in the modification of cement systems, and the establishment of the limits of their optimal concentrations. Materials and methods. The research is aimed at establishing the limits of optimal concentrations of polycarboxylate and sulfonaphthalene formaldehyde plasticizers. The limits of plasticizers optimal concentrationsis determined withdye solubilization method, surface tension and conductometric methods, and studies on establishing the stabilizing effect of plasticizers on a bismuth titanate fine particles suspension. Results and discussion. To establish the limits of the optimal concentration capable of stabilizing fine particles of bismuth titanate in suspension, CMC is determined by the dye solubilization method, surface tension and conductometric methods. It is found that a polycarboxylate plasticizer is characterized by one CMC point, and a sulfonaphthalinformaldehyde plasticizer is characterized by two CMC points: CMC1 and CMC2. At CMC1 point unstable spherical micelles are formed, which turn into stable ones at the CMC2 point. At concentrations exceeding the CMC2 value, polymorphic transformations of spherical micelles into nonspherical asymmetric micelles occur. The same can be traced for the polycarboxylate plasticizer CMC only in one stage. It can also be concluded that it is not reasonable to increase the plasticizer concentration above CMC for polycarboxylate plasticizer and above CMC2 for sulfonaphthalinformaldehyde plasticizer, which is due to structural changes in the micelles of plasticizers. It is assumed that in order to stabilize bismuth titanate fine particles, it is necessary to choose the plasticizers concentration within the limits not exceeding the values of CMC for polycarboxylate plasticizer and CMC2 for sulfonaphthalinformaldehyde plasticizer. Conclusion. Concluding results demonstrate the limits of optimal plasticizers concentrations for the stabilization of bismuth titanate fine particles suspension. For polycarboxylate plasticizer this range of concentrations is 1.1 – 1.5 g/l; for sulfonaphthalinformaldehyde plasticizer its 2.2 – 4.0 g/l.

Еще

Fine admixture, plasticizer, bismuth titanate, critical micelle concentration, methodology, aggregative and sedimentation stability

Короткий адрес: https://sciup.org/142237965

IDR: 142237965   |   DOI: 10.15828/2075-8545-2023-15-2-97-109

Список литературы Methodological Substantiation of the choice for a stabilizer for bismuth titanate fine particles suspensions

  • Cai J., Ran Q., Ma Q., Zhang H., Liu K., Zhou Y., Mu S. Influence of a Nano-Hydrophobic Admixture on Concrete Durability and Steel Corrosion. Materials. 2022; 15: 1-11. https://doi.org/10.3390/ma15196842
  • Szostak B., Golewski G.L. Effect of Nano Admixture of CSH on Selected Strength Parameters of Concrete Including Fly Ash. IOP Conference Series: Materials Science and Engineering. 2018; 1-6. https://doi.org/10.1088/1757-899X/416/1/012105
  • Danoglidis P. A., Falara M. G., Maglogianni M., Konsta-Gdoutos M. S. Scalable processing of cementitious composites reinforced with carbon nanotubes (CNTS) and carbon nanofibers (CNFS). Nanotechnologies in Construction: A Scientific Internet-Journal.2019;11(1): 20-27. https://doi.org/10.15828/2075-8545-2019-11-1-20-27
  • Kozlova I., Zemskova O., Semenov V., Stepina I. Effect of Nano-Aluminum Component on the Cement Properties. IOP Conference Series: Materials Science and Engineering. 2021; 1-6. https://doi.org/10.1088/1757-899X/1079/3/032071
  • Kozlova I., Samchenko S., Zemskova O. Physico-Chemical Substantiation of Obtaining an Effective Cement Composite with Ultrafine GGBS Admixture. Buildings. 2023: 13(4): 1-36. https://doi.org/10.3390/buildings13040925
  • Tjukavkina V.V. Aspekty ispol’zovanija nanodispersnyh titanosilikatnyh dobavok v sostave cementnoj kompozicii. Trudy Kol’skogo nauchnogo centra RAN. Serija: Estestvennye i gumanitarnye nauki. 2022; 1(2): 75-82. https://doi.org/10.37614/2949-1185.2022.1.2.009
  • Lastovka A.V., Danchenko T.V., Petuhova I.Ja., Poljakov I.A. Nanotehnologii v oblasti proizvodstva betona. Izvestija vuzov. Investicii. Stroitel’stvo. Nedvizhimost’. 2022; 12. 3(42): 338-349. https://doi.org/10.21285/2227-2917-2022-3-338-349
  • Huseien G.F. A Review on Concrete Composites Modified with Nanoparticles. Journal of Composites Science. 2023; 7(67). https://doi.org/10.3390/jcs7020067
  • Kopanica N.O., Dem’janenko O.V., Kulikova A.A., Samchenko S.V., Kozlova I.V., Luk’janova N.A. Vlijanie sposobov aktivacii na strukturno-tehnologicheskie harakteristiki nanomodificirovannyh cementyh kompozicij. Nanotehnologii v stroitel’stve: nauchnyj internet-zhurnal. 2022; 14(6): 481-492. https://doi.org/10.15828/2075-8545-2022-14-6-481-492
  • Jarolím T., Brozovsky J., Šácha D., Pizurova N. Influence of CNT Addition to the Frost Resistance of Concrete. Key Engineering Materials. 2018; 760: 30-34. https://doi.org/10.4028/www.scientific.net/KEM.760.30
  • Abid N., Khan A.M., Shujait S., Chaudhary K., Ikram M., Imran M., Haide J., Khan M., Khan Q., Maqbool M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science. 2022; 300. https://doi.org/10.1016/j.cis.2021.102597
  • Aleksandrova O.V., Nguen Dyk Vin’ Kuang, Bulgakov B.I. Vlijanie mineral’nyh dobavok na korrozionnuju stojkost’ stal’noj armatury v zhelezobetonnyh konstrukcijah. Stroitel’nye materialy. 2023; 1(2): 69-75. https://doi.org/10.31659/0585-430X-2023-810-1-2-69-75
  • Tkach E.V., Temirkanov R.I., Tkach S.A. Kompleksnoe issledovanie modificirovannogo betona na osnove aktivirovannogo mikrokremnezema sovmestno s mikroarmirujushhim voloknom dlja povyshenija jekspluatacionnyh harakteristik. Izvestiya Tomskogo politekhnicheskogo universiteta. Inziniring Georesursov. 2021; 332 (5): 215-226. https://doi.org/10.18799/24131830/2021/5/3204
  • Koleda E.A., Leonovich S.N., Zhdanok S.A., Polonina E.N., Budrevich N.A. Fiziko-mehanicheskie svojstva betona srednej prochnosti modificirovannogo uglerodnoj nanostrukturirovannoj dobavkoj. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: Materialy. Konstrukcii. Tehnologii. 2018; 2: 24-34
  • Beskopylny A., Shcherban E., Stel’makh S., Mailyan L., Meskhi B., Evtushenko A., Varavka V., Beskopylny N. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials. 2022; 15(12). https://doi.org/10.3390/ma15124254
  • Krishnaveni C.,Selvan S. Nano-alumina incorporation into concrete by various methods. Materials Today: Proceedings. 2022; 68(9). https://doi.org/10.1016/j.matpr.2022.08.139
  • Oliveira L., Ukei M., Barreto L. Characterization and stabilization of nano-metakaolin colloidal suspensions. Powder Technology. 2021; 383. https://doi.org/10.1016/j.powtec.2021.01.024
  • Ljashenko D.A., Perfilov V.A., Vesova L.M. Melkozernistyj nanomodificirovannyj beton. Inzhenernyj vestnik Dona. 2022; 10
  • Huzin A.F., Gabidullin M.G., Rahimov R.Z., Gabidullina A.N., Stojanov O.V. Modifikacija cementnyh kompozitov uglerodnymi nanotrubkami. Vestnik Kazanskogo tehnologicheskogo universiteta. 2013; 5: 115-118
  • Agzamov F.A., Davletshin R.F., Beljaeva E.V. Mehanizm dejstvija plastifikatorov v tamponazhnyh rastvorah. Neftegazovoe delo. 2017; 15(2): 8-13
  • Samchenko, S.V., Egorov E.S., Abramov M.A. Osobennosti povtornogo ispol’zovanija cementnyh suspenzij pri realizacii tehnologii reciklinga betonnyh smesej. Vestnik MGSU. 2021; 16(12): 1573-1581. https://doi.org/10.22227/1997-0935.2021.12.1573-1581
  • Gorbach P.S., Shherbin S.A. Nauchno obosnovannyj vybor penoobrazovatelja i ego koncentracii. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2012; 4(37): 191-199.
Еще
Статья научная