Метод конечных элементов в расчетах на изгиб микрополярных упругих тонких пластин
Автор: Жамакочян Кнарик Араратовна, Саркисян Самвел Оганесович
Журнал: Вычислительная механика сплошных сред @journal-icmm
Статья в выпуске: 3 т.9, 2016 года.
Бесплатный доступ
В статье сжато излагается общая прикладная микрополярная теория изгибной деформации упругих тонких пластин, находящихся в условиях поперечных сдвиговых деформаций. Теория приводится в двух равносильных формулировках - дифференциальной и вариационной; из используемого вариационного принципа следуют дифференциальные уравнения равновесия, соотношения упругости, геометрические соотношения и естественные граничные условия изгиба. Микрополярная (моментная) теория изгибной деформации для пластин была получена на основе метода гипотез из соответствующей трехмерной теории, адекватно описывающей свойства асимптотического решения в случае тонкой пластинки. Также приводятся основные положения метода конечных элементов при его применении для расчета граничных задач микрополярных упругих тонких пластин, находящихся в условиях изгибной деформации. Для такого класса задач разработаны эффективные четырехугольные конечные элементы. С помощью вариационного принципа Лагранжа, записанного для микрополярных пластин, определяются жесткостные характеристики конечного элемента и, исходя из построенной матрицы жесткостей, выполняется процедура формирования разрешающей системы линейных алгебраических уравнений. Рассматривается конкретная задача изгиба квадратной микрополярной упругой пластинки под действием равномерно распределенной силовой нагрузки, когда края пластинки шарнирно оперты. Изучается конкретная пластинка в рамках микрополярной упругости. Численная реализация решения системы линейных алгебраических уравнений метода конечных элементов осуществлена на персональном компьютере. Для сопоставления тоже численно рассчитаны характеристики для соответствующей классической упругой пластинки (с учетом деформации поперечного сдвига) при остальных равных значениях параметров задачи. Анализ результатов показывает эффективность микрополярного подхода по сравнению с классическим при описании жесткости и прочности пластинки.
Микрополярная теория упругости, пластинка, изгиб, метод конечных элементов
Короткий адрес: https://sciup.org/14320818
IDR: 14320818 | DOI: 10.7242/1999-6691/2016.9.3.31
Список литературы Метод конечных элементов в расчетах на изгиб микрополярных упругих тонких пластин
- Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates//ZAMM. -2009. -Vol. 89, no. 4. -P. 242-256.
- Altenbach J., Altenbach H., Eremeyev V.A. On generalized Cosserat-tape theories of plates and shells: a short review and bibliography//Archive of Applied Mechanics. -2010. -Vol. 80, no. 1. -P. 73-92.
- Mechanics of generalized continua: one hundred year after the Cosserats//Advances in Mechanics and Mathematics/Ed. by G. Maugin, A.V. Metrikine. -2010. -337 p.
- Mechanics of generalized continua -from micromechanical basics to engineering applications/Ed. by H. Altenbach, G. Maugin, V. Erofeev. -New York: Springer-Verlag, 2011. -350 p.
- Введение в микро-и наномеханику. Математические модели и методы/Под ред. А.И. Потапова. -Н. Новгород: Изд-во НГТУ им. Р.Е. Алексеева. -2010. -303 с.
- Вычислительная механика сплошных сред. -2009. -Т. 2, № 4.
- Саркисян С.О. Математическая модель микрополярных упругих тонких пластин и особенности их прочностных и жесткостных характеристик//ПМТФ. -2012. -Т. 53, № 2. -С. 148-156.
- Саркисян С.О. Общая теория микрополярных упругих тонких оболочек//Физ. мезомех. -2011. -Т. 14, № 1. -С. 55-66.
- Sargsyan S. Asymptotically confirmed hypotheses method for the construction of micropolar and classical theories of elastic thin shells//Advances in Pure Mathematics. -2015. -Vol. 5, no. 10. -P. 629-642.
- Sargsyan S.H. Energy balance equation, energetic theorems and variation equation for the general theory of micropolar elastic isotropic thin shells//International Journal of Mechanics. -2014. -Vol. 8. -P. 93-100.
- Nakamura S., Benedict R., Lakes R. Finite element method for orthotropic micropolar elasticity//Int. J. Eng. Sci. -1984. -Vol. 22, no. 3. -P. 319-330.
- Nakamura S., Lakes R.S. Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid//Comput. Method Appl. M. -1988. -Vol. 66, no. 3. -P. 257-266.
- Корепанов В.В., Матвеенко В.П., Шардаков И.Н. Численное исследование двумерных задач несимметричной теории упругости//МТТ. -2008. -№ 2. -С. 63-70.
- Корепанов В.В. Численное обоснование экспериментов по обнаружению эффектов моментного поведения материалов//Вестник ННГУ. -2011. -№ 4-4. -С. 1536-1538.
- Нестеров В.А. Модельный расчет пластины, податливой при трансверсальном сдвиге//Механика композитных материалов. -2015. -Т. 51, № 1. -С. 59-76.
- Нестеров В.А. Матрица жесткости конечного элемента пластины, податливой при трансверсальном сдвиге//Механика композитных материалов. -2011. -Т. 47, № 3. -С. 399-418.
- Lakes R.S. Experimental methods for study of Cosserat elastic solids and other generalized continua//Continuum models for materials with micro-structure/Ed. by H. Muhhaus. -New York: Wiley, 1995. -P. 1-22.