Методология адаптивного управления производственными запасами в условиях нестационарного рынка

Бесплатный доступ

Статья посвящена особенностям применения методологии адаптивного подхода к управлению производственными запасами. Автором показаны возможности использования данного подхода для построения имитационных моделей системы управления запасами и планирования поставок с применением прикладной теории систем и теории систем автоматического управления.

Адаптивное управление, управление производственными запасами, модели систем управления запасами, теория систем

Короткий адрес: https://sciup.org/147155608

IDR: 147155608

Текст научной статьи Методология адаптивного управления производственными запасами в условиях нестационарного рынка

При изучении и реализации многих динамических процессов к подсистеме управления (устройству, органу или лицу, принимающему решение) предъявляется требование эффективной работы в самых различных условиях, в том числе в обстановке неопределенности. Диапазон доступных знаний может простираться от весьма хорошей информированности до полного незнания окружающей обстановки. Надежда на принятие рационального решения в подобной ситуации может быть связана с тем, что в ходе самого процесса в подсистему управления поступает дополнительная информация о реакции окружающей среды на принимаемые решения.

Беллман Р. [1]

Вопрос современного практического управления производственными запасами достаточно широко освещен в литературе. Однако, несмотря на то, что данная проблема впервые сформулированная еще в 1915 г. Фордом Харрисом [4], она не потеряла своей актуальности и в настоящее время. Работы ведутся в нескольких аспектах. С одной стороны, значительно продвинулись исследования и наработки в области практического применения систем управления запасами, с другой стороны, продолжается создание и исследование абстрактных математических моделей таких систем. Первые находят интерес среди управленцев, вторые необходимы для развития теоретических посылок управления запасами.

Проведенный автором обзор современного этапа развития методологии, аппарата исследования, формальных моделей и стратегий управления запасами позволяет констатировать следующее.

  • 1.    Настоящий период разработки теории управления запасами характеризуется все большим использованием современного математического аппарата и методологии общей и специальной теории систем автоматического управления -принципа максимума, динамического программирования, статистической оптимизации, идентификации и фильтрации, адаптивного подхода и инвариантных стратегий.

  • 2.    При этом решение задачи оперативного управления запасами в основном идет в следующих основных направлениях:

  • -    преимущественного исследования стохастических моделей и статистических методов управления запасами;

  • -    распространения адаптивного подхода и методов управления по неполным данным;

  • -    исследования многономенклатурных систем управления запасами с коррелированным спросом;

  • -    исследования замкнутых по спросу систем управления запасами;

  • -    исследования систем управления запасами с частично наблюдаемым спросом;

  • -    развития методов статистического моделирования для анализа и оптимизации систем управления запасами.

  • 3.    Отмеченные тенденции развития теории управления запасами объективно способствуют сближению результатов теории с требованиями практики за счет как «усложнения» - в смысле отражения формальными моделями характерных черт все более сложных реальных систем, отказа от идеализирующих предположений и т. п., так и «упрощения» - в смысле уменьшения требований к априорной и текущей информации, приведения их в соответствие с реальными возможностями ее получения.

  • 4.    С другой стороны, результаты последних исследований в области теории управления запасами по-прежнему носят отвлеченный характер с точки зрения возможности их практического внедрения в конкретных приложениях. Объективные причины подобного положения дел заключается,

  • 5.    Приведенные автором в своей работе [2] примеры некоторых относительно простых моделей и правил управления запасами наглядно демонстрируют те трудности, с которыми придется столкнуться инженерам, программистам и экономистам предприятия, если они попытаются воспользоваться известными результатами теории управления запасами для решения своих практических задач. Даже интерпретация этих результатов под силу только коллективам с высоким научным потенциалом и практическим опытом. Очевидно, что производственные и коммерческие предприятия среднего и малого бизнеса, в отличие от предприятий большой индустрии, как правило, не имеют, да и не будут иметь в своем штате специалистов, которые бы занимались подобными задачами. Именно поэтому задача разработки реализуемой и понятной системы управления запасами (СУЗ) является на сегодняшний день по-прежнему достаточно актуальной.

конечно же, не в нежелании исследователей заниматься практическими аспектами теории, а в исключительной сложности стоящей перед ними задачи. Именно это обстоятельство предопределяет отсутствие простых оптимальных стратегий и параметров решения и анализа задачи управления запасами, которые бы охватывали достаточно широкий круг реальных условий. В связи с этим всякие попытки учета реальных обстоятельств, как правило, приводят к такому усложнению модели управления запасами и методов решения оптимизационной задачи, что получаемые при этом результаты носят сугубо индивидуальный, частный характер и по этой причине оказываются малопригодны- w ми для использования в других приложениях.

Использование в целях упрощения понимания и снижения трудностей практического внедрения теоретических положений более простых (наглядных) моделей, стратегий и алгоритмов управления запасами требует специального исследования с целью обоснования их эффективности в конкретных приложениях. Аналитическое решение такой задачи представляет не меньшие трудности, чем трудности глобальной оптимизации. В качестве приемлемого практического инструмента здесь следует использовать эвристический подход, основанный на идее оптимизации систем методом сравнительного анализа вариантов путем их имитационного моделирования в диалоговом, возможно экспертном режиме.

Анализ проблем и препятствий на пути перехода отечественных предприятий к устойчивой работе в условиях посткризисной экономики показывает, что одной из главных причин сложившегося положения является отсутствие эффективных и практически реализуемых теорий, методов и моделей систем управления нестационарными товарно-денежными потоками в условиях рынка.

При этом одной из ключевых задач расширенного воспроизводства, развития и повышения эффективности отечественной экономики и производства является не собственно производство, а управление товарооборотом в нестационарном рынке - функция совершенно не свойственная административно-плановой экономике, но более значимая по мере динамизации развития экономики рыночной.

Несмотря на острую практическую восстре-бованность в нашей стране и активно возрастающую востребованность в развитых экономиках задача эффективного управления товарооборотом в условиях нестационарного рынка разрабатывалась как у нас, так и за рубежом в основном прикладными математиками в рамках экономикоматематических методов.

При этом, несмотря на значительные усилия и использование самых современных теоретикоматематических подходов, практические результаты этих работ были незначительны ввиду высокой сложности предмета исследования чисто абстрактными методами.

В силу отмеченного в мировой, а особенно в нашей экономической науке сформировалась фундаментальная, как с позиции широты охвата и используемых методов, так и с позиции практической жизненной необходимости, задача создания практически реализуемых методологических подходов и методов экономического управления товародвижением в условиях нестационарного рынка и эффективно работающих систем управления запасами.

Анализ общих закономерностей и практических проблем управления товарооборотом предприятия позволил выявить следующие первоочередные задачи таких исследований:

  • -    изучение специфики внешней среды предприятия (нестационарный рынок многономенклатурного товара). Разработка адекватных рассматриваемому рынку методов и методик анализа и алгоритмов определения и автоматизированной обработки параметров рыночной среды (прежде всего, спроса и поставок);

  • -    построение содержательных моделей управления запасами и разработка рациональных стратегий управления многономенклатурной продукцией, реализуемой в условиях нестационарного рынка;

  • -    разработка структуры и параметрический синтез системы управления запасами и ее информационной подсистемы.

Как уже было отмечено, наиболее адекватным методом синтеза квазиоптимальных эффективных систем управления в условиях недостаточности и изменчивости данных о внешних возмущениях и информативных параметрах среды является адаптивный метод. Адаптивный подход выглядит очень привлекательным по двум причинам. Во-первых, адаптивным стратегиям свойственна универсальность в смысле инвариантности структуры и параметров систем управления к изменению факторов среды их функционирования. Во-вторых, адаптивные модели обладают хорошими конструктивными качествами, а именно - простотой используемой структуры. В нашем случае это означает возможность обоснованного использования в качестве базовых (основных) стратегий управления запасами хорошо известные решения - двухуровневые стратегии управления запасами и структуры с обратной связью по спросу. При этом структура адаптивной системы также выглядит достаточно прозрачной - она отличается от исходной только наличием подсистемы, формулирующей оценки неизвестных факторов, с помощью которых осуществляется процесс восстановления соответствия между значениями факторов и параметрами управления, т. е. уточнение управляющей функции по оценке ее параметров.

С позиций данного подхода автором доказано, что для построения имитационных моделей системы управления запасами и планирования поставок целесообразно использовать аппарат прикладной теории систем и теории систем автоматического управления. Напомним, что в этом случае изучаемая СУЗ рассматривается как система управления, которая может быть в свою очередь представлена структурой, состоящей из объекта управления, в качестве которого выступает регулируемый запас на складе, и управляющей системы, состоящей из исполнительного органа (регулятора) - поставщика, действующего на основе сигнала управления -заказа на поставку, который формируется на основе прогноза внешнего возмущения - спроса и измерений состояния объекта управления - текущего уровня запасов (см. рисунок).

Задача такого рода сформулирована и проанализирована в монографии Первозванского А.А. [3]. Однако при ее решении принят целый ряд существенных ограничений, которые не соответствуют условиям функционирования СУЗ, актуальных для современных предприятий (прежде всего, значительная нестационарность и стохастичность внешней среды). Поэтому возможность практического применения результатов, полученных в [3], нуждается в дополнительном исследовании.

В то же время, с точки зрения предлагаемого здесь подхода к синтезу СУЗ, результаты [3] обладают особой привлекательностью, которая заключается в их наглядном характере, позволяющем определить общую морфологическую структуру СУЗ по спросу.

Представляется, что указанная структура может быть достаточно просто преобразована в структуру, обладающую большей гибкостью и, следовательно, и эффективностью в условиях динамической среды. В свою очередь, как уже отмечалось, построение такой модели позволяет оценить возможность распространения любых результатов, полученных с ее помощью, на более общие условия функционирования СУЗ с помощью метода имитационного моделирования. Последние соображения имеют важные последствия, так как позволяют снять целый ряд ограничений, используемых в [3].

В соответствии с вышеприведенными выводами автором был использован данный подход к искомой задаче синтеза СУЗ в условиях нестационарной среды. Результаты проведенного автором статистического исследования подтвердили возможность формирования эффективных адаптивных алгоритмов оперативного управления запасами в условиях нестационарной среды.

В целях упрощения на первом этапе синтеза системы управления было принято допущение об известности характера среды с точностью до параметров, а в качестве учитываемого фактора среды был выбран случайный спрос х, . Для преодоления получаемой в этом случае ситуации параметрической априорной неопределенности в рассматриваемых условиях целесообразно использовать наиболее просто реализуемый вариант адаптивного подхода, основанный на замене неизвестных параметров оптимального правила решения их точечными оценками. Тогда, в соответствии с указанным методом, квазиоптимальная (адаптив-

Пель системы С

х(Д - регулярное возмущение внешней среды; w(r) - параметр управления;

ДО - внешнее воздействие среды (нерегулярное возмущение); z(t) - текущее состояние запасов; q(f) - поставка товаров.

.           Рисунок

ная) стратегия управления запасами будет представлять собой частный случай двухуровневой (R, г) - стратегии вида:

  • 4 v         z>r

где z - текущее состояние запаса; г - точка заказа, а неизвестные параметры спроса (его математическое ожидание х( и коэффициент вариации var{x,}), через которые определяется вектор управления U(q, г\ заменены их точечными оценками (х,, var{xj).

Оперативное правило решения данной стратегии соответствует модели, оптимизирующей размер q и точку заказа г в предстоящем периоде t+T на основе процедур идентификации и прогнозирования спроса xt и оценки zt текущего состояния запаса zt, осуществляемых в базисном периоде /, так, что qtVr =          ” г' + г '^’ при Т> т,

(0, zt>r, +т-х, где т — время поставки, гнт = >r е ^г * С г (var{xj) = mi11} >

Qr - область возможных значений г, Cr (var{xj) -суммарные издержки управления страховым запасом, зависящие от случайной компоненты спроса -его вариации, которая представлена оценкой ее показателей (коэффициентом вариации спроса var{x,}).

Полученная при этом структура оптимального размера заказа q*+r формально аналогична структуре заказа при линейном законе управления, предложенном А.А. Первозванским и рассмотренном выше, а именно - также состоит из детерминированной q*+T и случайной qtVT составляющих: *      _*

Че+т = 4t+T +4t+r > которые определяются независимо друг от друга.

Однако сама процедура нахождения компонент q*+r и q*+T обладает рядом существенных особенностей адаптивного метода, принципиально отличающих рекомендуемую стратегию от подхода А.А. Первозванского.

В частности, формирование детерминированной составляющей q*+T, которая обеспечивает учет устойчивой (средней) компоненты спроса х из условия минимизации издержек создания А и хранения h оперативного запаса в системе без дефицита, хотя и определяется также согласно формуле Уилсона, базируется на использовании предварительной оценки х, величины интенсивности спроса х, так, что

2-х, - А

4tVT = А---Г” •

  • V h

Составляющая заказа q*+T, предназначенная для компенсации стохастической компоненты спроса х, и обеспечивающая заданный уровень гарантированного удовлетворенного спроса, также образуется на основе процедуры идентификации. Она определяется как отклонение уровней запаса г, который здесь имеет смысл порога срабатывания, в виде

Следовательно, предлагаемая в работе адаптивная постановка задачи синтеза СУЗ предполагает введение гибкой обратной связи не только по детерминированной, но и по случайной компоненте спроса, что существенно расширяет возможности активного управления запасами за счет включения в контур управления страхового запаса г как функции показателя колеблемости спроса х,. Структура канала формирования случайной компоненты заказа q*+r в этом случае имеет вид, аналогичный структуре канала оперативного управления, формирующего детерминированную составляющую q *+T Понятно, что в качестве измеряемого параметра спроса здесь должны использоваться параметры, которые характеризуют не его устойчивую составляющую (средняя интенсивность х, X а вариацию, колеблемость, например, коэффициент вариации var{xt}, стандартное отклонение OXl.

Обязательным условием эффективности адаптивных решений, т.е. близости адаптивного U (q, г) и «оптимального» U (q, г) правила решения в СУЗ, является сходимость, состоятельность и эффективность оценок неизвестных параметров спроса, определяющих параметры управления запасами q и г. В рассматриваемом приложении на данные требования дополнительно накладывается еще одно условие. Это ограничение на скорость сходимости вычисляемых оценок. Очевидно, что исходя из практических соображений формирование значений оценок параметров спроса х,,аХ(, близких к истинным значениям х, и ая при оперативном управлении запасами имеет смысл лишь в том случае, если оно возможно за период времени, не более периода поставки за вычетом времени выполнения заказа Т-т. Проведенные автором эксперименты показали, что скорость сходимости оценок спроса х,, дХ1 к истинным значениям х,,<тх, с погрешностью менее 0,5 % не превышает величины времени поставки за вычетом времени выполнения заказа в диапазоне изменения коэффициента вариации varfx,} от 0,2 до 2, а при var{xj = 5, крайне редко встречающемся на практике, - не превышает времени поставки.

Приведенные данные свидетельствуют о работоспособности предложенных алгоритмов оценивания неизвестных параметров спроса, а, следовательно, и адаптивной стратегии для оперативного управ- ле ния запасами в целом в жестких условиях, характеризующихся непредвиденными и существенными флуктуациями параметров спроса в течение периода поставки.

Таким образом, анализ результатов развития теоретических и практических аспектов решения сформулированных задач был сконцентрирован, главным образом, на критической оценке возможности практической реализации известных подходов, методов, моделей и алгоритмов с учетом современных экономических условий. Основные результаты и выводы проведенного аналитического обзора сводятся к следующим.

  • 1.    Настоящий период разработки теории управления запасами характеризуется все большим использованием современного математического аппарата и методологии общей и специальной теории систем автоматического управления - принципа максимума, динамического программирования, статистической оптимизации, идентификации и фильтрации, адаптивного подхода и инвариантных стратегий. В этой связи важно отметить существенные трудности методологического и математического характера, которые несомненно возникнут у специалистов-практиков при внедрении известных теоретических моделей, стратегий и аспектов расчета параметров управления запасами.

  • 2.    Используемые в настоящее время методы анализа и процедуры оценки текущего состояния и прогнозирования «минимального» фактора среды функционирования СУЗ - вероятностного спроса и поставок продукции - в условиях существенной не-стационарности рынка не позволяют априорно осуществить адекватный выбор какого-либо одного универсального метода. Единственно приемлемым

  • 3.    Необходимое с позиции практического осмысления и реализуемости упрощение практической постановки задачи управления запасами путем использования относительно простых моделей, стратегий и алгоритмов управления нуждается в получении доказательства близости их качества к оптимальному в рассматриваемых приложениях. Реализация этой задачи невозможна без проведения специальных исследований.

  • 4.    Таким образом, несмотря на большой пласт теоретических исследований, проблема управления запасами в условиях нестационарного рынка, задача разработки методов и моделей, эффективно реализуемых на практике, остается по-прежнему нерешенной и актуальной.

подходом к решению данной проблемы следует считать проведение дополнительного экспериментального тестирования рекомендуемых процедур анализа и прогноза спроса в каждом конкретном приложении, непосредственно в процессе управления и использования адаптивных систем.

Список литературы Методология адаптивного управления производственными запасами в условиях нестационарного рынка

  • Беллман, Р. Процессы регулирования с адаптацией/Р.Беллман. -М.: Наука, 1964.
  • Дзензелюк, Н.С. Разработка и исследование системы управления товародвижением в условиях нестационарного рынка: дис.... канд. экон. наук/Н.С. Дзензелюк. -Челябинск, 2000.
  • Первозванский, А.А. Математические модели в управлении производством и запасами/А. А. Первозванский. -М.: Наука, 1975.
  • Harris, F. Operations and Cost. (Factory Management Series)/F. Harris. -Chicago: A.W. Shaw Co., 1915.
Статья научная