Микробиота и репродукция у сельскохозяйственных видов млекопитающих (обзор)

Автор: Попов Д.В.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 2 т.57, 2022 года.

Бесплатный доступ

Использование специализированных пород животных сельскохозяйственных видов часто сопровождается снижением репродуктивного успеха. В молочном скотоводстве растет количество дней сервис-периода, процедур искусственного осеменения на одну стельность, частоты потерь стельности (С.В. Гуськова с соавт., 2014). Накопленные данные по получению эмбрионов методами in vivo и in vitro и их трансплантации свидетельствуют о значительных (30-60 %) потерях эмбрионов (P.J. Hansen, 2020). Причины низких показателей при применении репродуктивных технологий разнообразны и связаны как с биотическими, так и абиотическими факторами, при этом одним из ключевых при потерях эмбрионов может быть дисбаланс микробных сообществ в отделах репродуктивной системы как самок-доноров, так и самок-реципиентов. Изучение состава микробиоты различных отделов и систем многоклеточного организма в последнее время становится все более доминирующей темой в научной литературе. С появлением современных методов идентификации микробов, например метагеномного секвенирования, выявлено большое микробное разнообразие в разных анатомических отделах макроорганизмов. Накоплены данные о микробном составе и его динамике в органах репродуктивной системы, его связях с воспроизводством у млекопитающих, репродуктивным успехом, протеканием беременности, прогнозированием возможностей возникновения патологических процессов. В работе рассматриваются результаты исследований влияния микробиоты на успешность применения репродуктивных технологий, таких как экстракорпоральное оплодотворение, трансплантация эмбрионов, искусственное осеменение. Обсуждается (F. Marco-Jiménez с соавт., 2020) влияние симбиотических бактерий на фертильность и качество семени. Для млекопитающих это направление малоизучено, и крайне необходимо расширять изучение микробиоты репродуктивного тракта сельскохозяйственных животных. Результаты таких исследований дадут дополнительное понимание репродуктивных процессов и представление о причинах неудачных случаев и о положительных исходах воспроизводства. При этом практическое применение такой информации увеличит шансы успешно применять репродуктивные биотехнологии, снизит затраты, связанные с воспроизводством и терапевтическими вмешательствами при лечении патологий репродуктивной системы, а также откроет возможность для разработки и практического применения новых методов, в частности микробной терапии. Итак, можно сделать вывод, что микробиота органов репродуктивной системы млекопитающих оказывает влияние на физиологические процессы размножения (R. Koedooder с соавт., 2019), и при этом очевидно, что, имея возможность управлять микробными сообществами, человек может повысить шансы наступления репродуктивного успеха при воспроизводстве высокоспециализированных пород сельскохозяйственных животных (P.J. Hansen, 2020; R.W. Hyman с соавт., 2012; D.E. Moore с соавт., 2000).

Еще

Эндометрий, микробиота, микробиом, репродуктивная система, сперма, матка, репродуктивные технологии

Короткий адрес: https://sciup.org/142235668

IDR: 142235668   |   DOI: 10.15389/agrobiology.2022.2.222rus

Список литературы Микробиота и репродукция у сельскохозяйственных видов млекопитающих (обзор)

  • Гуськова С.В., Турбина И.С., Ескин Г.В., Комбарова Н.А. Основные генетические причины эмбриональных потерь в молочном скотоводстве, связанные с интенсивной селекцией по продуктивности. Мясное и молочное скотоводство, 2014, 3: 10-13.
  • Hansen P.J. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J. Anim. Sci., 2020, 98(11): skaa288 (doi: 10.1093/jas/skaa288).
  • Koedooder R., Mackens S., Budding A., Fares D., Blockeel C., Laven J., Schoenmakers S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Human Reproduction Update, 2019, 25(3): 298-325 (doi: 10.1093/humupd/dmy048).
  • Marchesi J.R., Ravel J. The vocabulary of microbiome research: a proposal. Microbiome, 2015, 3: 31 (doi: 10.1186/s40168-015-0094-5).
  • Стома И.О., Карпов И.А. Микробиом человека. Минск, 2018.
  • Lane D.J., Pace B., Olsen G.J., Stahl D.A., Sogin M.L., Pace N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci USA, 1985, 82(20): 6955-6959 (doi: 10.1073/pnas.82.20.6955).
  • Gray M.W., Sankoff D., Cedergren R.J. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Research, 1984, 12(14): 5837-5852 (doi: 10.1093/nar/12.14.5837).
  • Metzker M.L. Emerging technologies in DNA sequencing. Genome Res., 2005, 15: 1767-1776 (doi: 10.1101/gr.3770505).
  • Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.-J., Chen Z. Genome sequencing in microfabricated highdensity picolitre reactors. Nature, 2005, 437(7057): 376-380 (doi: 10.1038/nature03959).
  • Loman N.J., Misra R.V., Dallman T.J., Constantinidou C., Gharbia S.E., Wain J., Pallen M.J. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol., 2012, 30(5): 434-439 (doi: 10.1038/nbt.2198).
  • Ranjan R., Rani A., Metwally A., McGee H.S., Perkins D.L. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun., 2016, 469(4): 967-977 (doi: 10.1016/j.bbrc.2015.12.083).
  • Roumpeka D.D., Wallace R.J., Escalettes F., Fotheringham I., Watson M. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Frontiers in Genetics, 2017, 8: 23 (doi: 10.3389/fgene.2017.00023).
  • Ott S.J., Musfeldt M., Ullmann U., Hampe J., Schreiber S. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. Journal of Clinical Microbiology, 2004, 42(6): 2566-2572 (doi: 10.1128/JCM.42.6.2566-2572.2004).
  • Malinen E., Kassinen A., Rinttila T., Palva A. Comparison of real-time PCR with SYBR Green I or 5´-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology, 2003, 149: 269-277 (doi: 10.1099/mic.0.25975-0).
  • Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Applied and Environmental Microbiology, 2009, 75(23): 7537-7541 (doi: 10.1128/AEM.01541-09).
  • Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 2010, 7: 335 (doi: 10.1038/nmeth.f.303).
  • Edgar R.C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, 2018, 34: 2371-2375 (doi: 10.1093/bioinformatics/bty113).
  • Westcott S.L., Schloss P.D. De novo clustering methods outperform reference based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ, 2015, 3: e1487 (doi: 10.7717/peerj.1487).
  • McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R., Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J., 2012, 6: 610-618 (doi: 10.1038/ismej.2011.139).
  • Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research,2007, 35(21): 7188-7196 (doi: 10.1093/nar/gkm864).
  • Cole J.R., Wang Q., Cardenas E., Fish J., Chai B., Farris R.J., Kulam-Syed-Mohideen A.S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 2009, 37(suppl_1): D141-D145 (doi: 10.1093/nar/gkn879).
  • Chen W., Zhang C.K., Cheng Y., Zhang S., Zhao H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS ONE, 2013, 8: e70837 (doi: 10.1371/journal.pone.0070837).
  • Nguyen N.P., Warnow T., Pop M., White B. A perspective on 16 S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes, 2016, 2: 16004 (doi: 10.1038/npjbiofilms.2016.4).
  • Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S.K., Sodergren E., Methé B., DeSantis T.Z., Human Microbiome Consortium, Petrosino J.F., Knight R., Birren B.W. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res., 2011, 21(3): 494-504 (doi: 10.1101/gr.112730.110 ).
  • D’Amore R., Ijaz U.Z., Schirmer M., Kenny J.G., Gregory R., Darby A.C., Shakya M., Podar M., Quince C., Hall N. A comprehensive benchmarking study of protocols and sequencing platforms for 16 S rRNA community profiling. BMC Genomics, 2016, 17: 55 (doi: 10.1186/s12864-015-2194-9).
  • Glazko V.I., Zybaylov B.L., Kosovsky G.Yu., Glazko G.V., Glazko T.T. Domestication and microbiome The Holocene, 2021, 31(10): 1635-1645 (doi: 10.1177/09596836211025975).
  • Wilkins A.S. A striking example of developmental bias in an evolutionary process: The “domestication syndrome”. Evolution & Development, 2020, 22(1-2): 143-153 (doi: 10.1111/ede.12319).
  • Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species? Adv. Genet. Eng., 2015, 4(2): 1000125 (doi: 10.4172/2169-0111.1000125).
  • O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep., 2006, 7(7): 688-693 (doi: 10.1038/sj.embor.7400731).
  • Kolodny O., Callahan B.J., Douglas A.E. The role of the microbiome in host evolution. Phil. Trans. R. Soc. B, 2020, 375(1808): 20190588 (doi: 10.1098/rstb.2019.0588).
  • Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev., 2008, 32(5): 723-735 (doi: 10.1111/j.1574-6976.2008.00123).
  • Ikeda-Ohtsubo W., Brugman S., Warden C.H., Rebel J.M.J., Folkerts G., Pieterse C.M.J. How can we define “optimal microbiota?”: a comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture. Front. Nutr., 2018, 5: 90 ( doi: 10.3389/fnut.2018.00090).
  • Douglas-Escobar M., Elliott E., Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr., 2013, 167(4): 374-379 (doi: 10.1001/jamapediatrics.2013.497).
  • Bercik P., Denou E., Collins J., The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2): 599-609 (doi: 10.1053/j.gastro.2011.04.052).
  • Knight R., Callewaert C., Marotz C., Hyde E.R., Debelius J.W., McDonald D., Sogin M.L. The microbiome and human biology. Annual Review of Genomics and Human Genetics, 2017, 18: 65-86 (doi: 10.1146/annurev-genom-083115-022438).
  • Li J.V., Swann J., Marchesi J.R. Biology of the microbiome 2: metabolic role. Gastroenterol. Clin. North Am., 2017, 46(1): 37-47 (doi: 10.1016/j.gtc.2016.09.006).
  • Doré J., Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr. Opin. Biotechnol., 2015, 32: 195-199 (doi: 10.1016/j.copbio.2015.01.002).
  • NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US national institutes of health, fiscal years 2007-2016. Microbiome, 2019, 7: 31 (doi: 10.1186/s40168-019-0620)
  • Peterson S.N., Snesrud E., Liu J., Ong A.C., Kilian M., Schork N.J., Bretz W. The dental plaque microbiome in health and disease. PLoS ONE, 2013, 8: e58487 (doi: 10.1371/journal.pone.0058487).
  • Yang F., Zeng X., Ning K., Liu K.L., Lo C.C., Wang W., Chen J., Wang D., Huang R., Chang X. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J., 2012, 6: 1-10 (doi: 10.1038/ismej.2011.71).
  • Fredricks D.N., Fiedler T.L., Marrazzo J.M. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med., 2005, 353(18):1899-1911 (doi: 10.1056/NEJMoa043802).
  • Cotozzolo E., Cremonesi P., Curone G., Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals (Basel), 2020, 11(1): 31 (doi: 10.3390/ani11010031).
  • Chen C., Song X., Wei W., Zhong H., Dai J., Lan Z., Li F., Yu X., Feng Q., Wang Z. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun., 2017, 8: 875 (doi: 10.1038/s41467-017-00901-0).
  • Mitchell C.M., Haick A., Nkwopara E., Garcia R., Rendi M., Agnew K., Fredricks D.N., Eschenbach D. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol., 2015, 212(5): 611.e1-611.e9 (doi: 10.1016/j.ajog.2014.11.043).
  • Hickey R.J., Zhou X., Pierson J.D., Ravel J., Forney L.J. Understanding vaginal microbiome complexity from an ecological perspective. Transl. Res., 2012, 160(4): 267-282 (doi: 10.1016/j.trsl.2012.02.0080).
  • Noyes N., Cho K.-C., Ravel J., Forney L.J., Abdo Z. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis. PLoS ONE, 2018, 13: e0191625 (doi: 10.1371/journal.pone.0191625).
  • Ravel J., Gajer P., Abdo Z., Schneider G.M., Koenig S.K., McCulle S.L., Karlebach S., Gorle R., Russell J., Tacket C.O., Brotman R.M., Davis C.C., Ault K., Peralta L., Forney L.J. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci., 2011, 108(supplement_1): 4680- 4687 (doi: 10.1073/pnas.1002611107).
  • Gajer P., Brotman R.M., Bai G., Sakamoto J., Schütte U.M.E., Zhong X., Koenig S.S.K., Fu L., Ma Z.S., Zhou X., Abdo Z., Forney L.J., Ravel J. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med., 2012, 4(132): 132ra152 (doi: 10.1126/scitranslmed.3003605).
  • Albert A.Y.K., Chaban B., Wagner E.C., Schellenberg J.J., Links M.G., Van Schalkwyk J., Reid G., Hemmingsen S.M., Hill J.E., Money D. A study of the vaginal microbiome in healthy Canadian women utilizing cpn60-based molecular profiling reveals distinct Gardnerella subgroup community state types. PLoS ONE, 2015, 10: e0135620 (doi: 10.1371/journal.pone.0135620).
  • O’Hanlon D.E., Moench T.R., Cone R.A. Vaginal pH and microbicidal lactic acid when Lactobacilli dominate the microbiota. PLoS ONE, 2013, 8(11): e80074 (doi: 10.1371/journal.pone.0080074).
  • Anahtar M.N., Byrne E.H., Doherty K.E., Bowman B.A., Yamamoto H.S., Soumillon M., Padavattan N., Ismail N., Moodley A., Sabatini M.E., Ghebremichael M.S., Nusbaum C., Huttenhower C., Virgin H.W., Ndung'u T., Dong K.L., Walker B.D., Fichorova R.N., Kwon D.S. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity,2015, 42(5): 965-976 (doi: 10.1016/j.immuni.2015.04.019).
  • Anukam K.C., Osazuwa E.O., Ahonkhai I., Reid G. Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin city, Nigeria. Sexually Transmitted Diseases, 2006, 33(1): 59-62 (doi: 10.1097/01.olq.0000175367.15559).
  • Pendharkar S., Magopane T., Larsson P.-G., de Bruyn G., Gray G.E., Hammarström L., Marcotte H. Identification and characterisation of vaginal Lactobacilli from South African women. BMC Infect. Dis., 2013, 13: 43 (doi: 10.1186/1471-2334-13-43).
  • MacIntyre D.A., Chandiramani M., Lee Y.S., Kindinger L., Smith A., Angelopoulos N., Lehne B., Arulkumaran S., Brown R., Teoh T.G., Holmes E., Nicoholson J.K., Marchesi J.R., Bennett P.R. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep., 2015, 5: 8988 (doi: 10.1038/srep08988).
  • Aagaard K., Riehle K., Ma J., Segata N., Mistretta T.A., Coarfa C., Raza S., Rosenbaum S., Van den Veyver I., Milosavljevic A. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE, 2012, 7: e36466 (doi: 10.1371/journal.pone.0036466).
  • Romero R., Hassan S.S., Gajer P., Tarca A.L., Fadrosh D.W., Nikita L., Galuppi M., Lamont R.F., Chaemsaithong P., Miranda J., Chaiworapongsa T., Ravel J. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of nonpregnant women. Microbiome, 2014, 2: 4 (doi: 10.1186/2049-2618-2-4).
  • Hyman R.W., Fukushima M., Jiang H., Fung E., Rand L., Johnson B., Vo K.C., Caughey A.B., Hilton J.F., Davis R.W., Giudice L.C. Diversity of the vaginal microbiome correlates with preterm birth. Reproductive Sciences, 2014, 21(1): 32-40 (doi: 10.1177/1933719113488838).
  • Stout M.J., Zhou Y., Wylie K.M., Tarr P.I., Macones G.A., Tuuli M.G. Early pregnancy vaginal microbiome trends and preterm birth. Am. J. Obstet. Gynecol., 2017, 217(3): 356.e1-356.e18 (doi: 10.1016/j.ajog.2017.05.030).
  • Mendes-Soares H., Suzuki H., Hickey R.J., Forney L.J. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal Lactobacilli to their environment. Journal of Bacteriology, 2014, 196(7): 1458-1470 (doi: 10.1128/JB.01439-13).
  • Ojala T., Kankainen M., Castro J., Cerca N., Edelman S., Westerlund-Wikström B., Paulin L., Holm L., Auvinen P. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics, 2014, 15: 1070 (doi: 10.1186/1471-2164-15-1070).
  • Graspeuntner S., Bohlmann M.K., Gillmann K., Speer R., Kuenzel S., Mark H., Hoellen F., Lettau R., Griesinger G., König I.R. Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS ONE, 2018, 13: e0191047 (doi: 10.1371/journal.pone.0191047)
  • Babu G., Singaravelu B.G., Srikumar R., Reddy S.V. Comparative study on the vaginal flora and incidence of asymptomatic vaginosis among healthy women and in women with infertility problems of reproductive age. Journal of Clinical and Diagnostic Research, 2017, 11(8): DC18-DC22 (doi: 10.7860/JCDR/2017/28296.10417).
  • Campisciano G., Florian F., D’Eustacchio A., Stanković D., Ricci G., De Seta F., Comar M. Subclinical alteration of the cervical-vaginal microbiome in women with idiopathic infertility. J. Cell. Physiol., 2017, 232(7): 1681-1688 (doi: 10.1002/jcp.25806).
  • Di M.P., Filardo S., Porpora M.G., Recine N., Latino M.A., Sessa R. HPV/Chlamydia trachomatis co-infection: metagenomic analysis of cervical microbiota in asymptomatic women. New Microbiologica, 2018, 41(1): 34-41.
  • Van de Wijgert J.H.H.M, Borgdorff H., Verhelst R., Crucitti T., Francis S., Verstraelen H., Jespers V. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS ONE, 2014, 9: e105998 (doi: 10.1371/journal.pone.0105998).
  • Workowski K.A., Bolan G.A. Sexually transmitted diseases treatment guidelines, 2015. Recommendations and Reports, 2015, 64(RR3): 1-137.
  • Onderdonk A.B., Delaney M.L., Fichorova R.N. The human microbiome during bacterial vaginosis. Clinical Microbiology Reviews, 2016, 29(2): 223-238 (doi: 10.1128/CMR.00075-15).
  • Gottschick C., Deng Z.-L., Vital M., Masur C., Abels C., Pieper D.H., Wagner-Döbler I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome, 2017, 5: 99 (doi: 10.1186/s40168-017-0305-3).
  • Donders G.G., Van Calsteren K., Bellen G., Reybrouck R., Van den Bosch T., Riphagen I., Van Lierde S. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology, 2009, 116(10): 1315-1324 (doi: 10.1111/j.1471-0528.2009.02237.x).
  • Işik G., Demirezen Ş., Dönmez H.G., Beksaç M.S. Bacterial vaginosis in association with spontaneous abortion and recurrent pregnancy losses. Journal of Cytology, 2016, 33(3): 135-140 (doi: 10.4103/0970-9371.188050).
  • Karstrup C.C., Klitgaard K., Jensen T.K., Agerholm J.S., Pedersen H.G. Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology, 2017, 99: 41-47 (doi: 10.1016/j.theriogenology.2017.05.013).
  • Bicalho M.L., Lima F.S., Machado V.S., Meira E.B. Jr., Ganda E.K., Foditsch C., Bicalho R.C., Gilbert R.O. Associations among Trueperella pyogenes, endometritis diagnosis, and pregnancy outcomes in dairy cows. Theriogenology, 2016, 85(2): 267-274 (doi: 10.1016/j.theriogenology.2015.09.043).
  • Galvão K.N., Bicalho R.C., Jeon S.J. Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. Journal of Dairy Science, 2019, 102(12): 11786-11797 (doi: 10.3168/jds.2019-17106).
  • Bicalho V.S., Machado C.H., Higgins F.S., Lima R.C. Genetic and functional analysis of the bovine uterine microbiota. Part I: Metritis versus healthy cows. Journal of Dairy Science, 2017, 100(5): 3850-3862 (doi: 10.3168/jds.2016-12058).
  • Bicalho M.L.S., Lima S., Higgins C.H., Machado V.S., Lima F.S., Bicalho R.C. Genetic and functional analysis of the bovine uterine microbiota. Part II: Purulent vaginal discharge versus healthy cows. Journal of Dairy Science, 2017, 100(5): 3863-3874 (doi: 10.3168/jds.2016-12061).
  • Umar T., Yin B., Umer S., Ma X., Jiang K., Umar Z., Akhtar M., Shaukat A., Deng G. MicroRNA: could it play a role in bovine endometritis? Inflammation, 2021, 44(5): 1683-1695 (doi: 10.1007/s10753-021-01458-3).
  • Miller E.A., Beasley D.E., Dunn R.R., Archie E.A. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol., 2016, 7: 1936 (doi: 10.3389/fmicb.2016.01936).
  • Swartz J.D., Lachman M., Westveer K., O'Neill T., Geary T., Kott R.W., Berardinelli J.G., Hatfield P.G., Thomson J.M., Roberts A., Yeoman C.J. Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of Lactobacilli and Near-Neutral pH. Frontiers in Veterinary Science, 2014, 1: 19 (doi: 10.3389/fvets.2014.00019).
  • Hyman R.W., Herndon C.N., Jiang H., Palm C., Fukushima M., Bernstein D., Vo K.C., Zelenko Z., Davis R.W., Giudice L.C. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. Journal of Assisted Reproduction and Genetics, 2012, 29(2): 105-115 (doi: 10.1007/s10815-011-9694-6).
  • Moore D.E., Soules M.R., Klein N.A., Fujimoto V.Y., Agnew K.J., Eschenbach D.A. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertility and Sterility, 2000, 74(6): 1118-1124 (doi: 10.1016/s0015-0282(00)01624-1).
  • Hillier S.L., Nugent R.P., Eschenbach D.A., Krohn M.A., Gibbs R.S., Martin D.H., Cotch M.F., Edelman R., Pastorek J.G., Rao A.V., McNellis D., Regan J.A., et all., for the Vaginal Infections and Prematurity Study Group. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. New England Journal of Medicine, 1995, 333: 1737-1742 (doi: 10.1056/NEJM199512283332604).
  • Haahr T., Jensen J.S., Thomsen L., Duus L., Rygaard K., Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. Human Reproduction, 2016, 31(4): 795-803 (doi: 10.1093/humrep/dew026).
  • Mangot-Bertrand J., Fenollar F., Bretelle F., Gamerre M., Raoult D., Courbiere B. Molecular diagnosis of bacterial vaginosis: impact on IVF outcome. European Journal of Clinical Microbiology & Infectious Diseases, 2013, 32: 535-541 (doi: 10.1007/s10096-012-1770-z).
  • Pelzer E.S., Allan J.A., Waterhouse M.A., Ross T., Beagley K.W., Knox C.L. Microorganisms within human follicular fluid: effects on IVF. PLoS ONE,2013, 8: e59062 (doi: 10.1371/journal.pone.0059062).
  • Petrova M., Lievens E., Malik S., Imholz N., Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Frontiers in Physiology, 2015, 6: 81 (doi: 10.3389/fphys.2015.00081).
  • Moreno I., Codoñer F.M., Vilella F., Valbuena D., Martinez-Blanch J.F., Jimenez-Almazán J., Alonso R., Alamá P., Remohí J., Pellicer A. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol., 2016, 215: 684-703 (doi: 10.1016/j.ajog.2016.09.075).
  • Cicinelli E., Matteo M., Tinelli R., Lepera A., Alfonso R., Indraccolo U., Marrocchella S., Greco P., Resta L. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Human Reproduction, 2015, 30(2): 323-330 (doi: 10.1093/humrep/deu292).
  • Cicinelli E., Matteo M., Tinelli R., Pinto V., Marinaccio M., Indraccolo U., De Ziegler D., Resta L. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reproductive Sciences,2014, 21(5): 640-647 (doi: 10.1177/1933719113508817).
  • Khan K.N., Fujishita A., Kitajima M., Hiraki K., Nakashima M., Masuzaki H. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis. Human Reproduction, 2014, 29(11): 2446-2456 (doi: 10.1093/humrep/deu222).
  • Fotouh I.A., Al-Inany M.G. The levels of bacterial contamination of the embryo transfer catheter relate negatively to the outcome of embryo transfer. Middle East Fertility Society Journal,2008, 13(1): 39-43.
  • Franasiak J.M., Werner M.D., Juneau C.R., Tao X., Landis J., Zhan Y., Treff N.R., Scott R.T. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. Journal of Assisted Reproduction and Genetics, 2016, 33(1): 129-136 (doi: 10.1007/s10815-015-0614-z).
  • Kroon B., Hart R.J., Wong B., Ford E., Yazdani A. Antibiotics prior to embryo transfer in ART. Cochrane Database of Systematic Reviews, 2012, 3: CD008995 (doi: 10.1002/14651858.CD008995.pub2).
  • Brook N., Khalaf Y., Coomarasamy A., Edgeworth J., Braude P. A randomized controlled trial of prophylactic antibiotics (co-amoxiclav) prior to embryo transfer. Human Reproduction, 2006, 21(11): 2911-2915 (doi: 10.1093/humrep/del263).
  • Schoenmakers S., Steegers-Theunissen R., Faas M. The matter of the reproductive microbiome. Obstetric Medicine, 2019, 12(3): 107-115 (doi: 10.1177/1753495X18775899).
  • Kim J.H., Yoo S.M., Sohn Y.H., Jin C.H., Yang Y.S., Hwang I.T., Oh K.Y. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes. Journal of Maternal-Fetal & Neonatal Medicine, 2017, 30(19): 2329-2333 (doi: 10.1080/14767058.2016.1247799).
  • Beckers K.F., Sones J.L. Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. American Journal of Physiology-Heart and Circulatory Physiology, 2020, 318(1): H1-H10 (doi: 10.1152/ajpheart.00469.2019).
  • McElrath T.F., Hecht J.L., Dammann O., Boggess K., Onderdonk A., Markenson G., Harper M., Delpapa E., Allred E.N., Leviton A., ELGAN Study Investigators. Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. American Journal of Epidemiology, 2008, 168(9): 980-989 (doi: 10.1093/aje/kwn202).
  • Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med., 2014, 6(237): 237ra65 (doi: 10.1126/scitranslmed.3008599).
  • Benner M., Ferwerda G., Joosten I., Van der Molen R.G. How uterine microbiota might be responsible for a receptive, fertile endometrium. Human Reproduction, 2018, 24(4): 393-415 (doi: 10.1093/humupd/dmy012).
  • Weng S.-L., Chiu C.-M., Lin F.-M., Huang W.-C., Liang C., Yang T., Yang T.-L., Liu C.-Y., Wu W.-Y., Chang Y.-A., Chang T.-H., Huang H.-D. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS ONE,2014, 9(10): e110152 (doi: 10.1371/journal.pone.0110152).
  • Gdoura R., Kchaou W., Chaari C., Znazen A., Keskes L., Rebai T., Hammami A. Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis and Mycoplasma genitalium infections and semen quality of infertile men. BMC Infect. Dis., 2007, 7: 129 (doi: 10.1186/1471-2334-7-129).
  • Zinzendorf N.Y., Kouassi-Agbessi B.T., Lathro J.S., Don C., Kouadio L., Loukou Y.G. Ureaplasma urealyticum or Mycoplasma hominis infections and semen quality of infertile men in Abidjan. Journal of Reproduction and Contraception, 2008, 19(2): 65-72 (doi: 10.1016/S1001-7844(08)60008-5).
  • Ahmadi M.H., Mirsalehian A., Gilani M.A.S., Bahador A., Talebi M. Asymptomatic infection with Mycoplasma hominis negatively affects semen parameters and leads to male infertility as confirmed by improved semen parameters after antibiotic treatment. Urology, 2017, 100: 97-102 (doi: 10.1016/j.urology.2016.11.018).
  • Mändar R., Punab M., Korrovits P., Türk S, Ausmees K., Lapp E., Preem J.K., Oopkaup K., Salumets A., Truu J. Seminal microbiome in men with and without prostatitis. Int. J. Urol.,2017, 24(3): 211-216 (doi: 10.1111/iju.13286).
  • Monteiro C., Marques P.I., Cavadas B., Damião I., Almeida V., Barros N., Barros A., Carvalho F., Gomes S., Seixas S. Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. Am. J. Reprod. Immunol., 2018, 79(6): e12838 (doi: 10.1111/aji.12838).
  • Marco-Jiménez F., Borrás S., Garcia-Dominguez X., D'Auria G., Vicente J.S., Marin C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit Theriogenology, 2020, 158: 416-423 (doi: 10.1016/j.theriogenology.2020.09.028).
  • Mändar R., Punab M., Borovkova N., Lapp E., Kiiker R., Korrovits P., Metspalu A., Krjutškov K., Nõlvak H., Preem J.K., Oopkaup K., Salumets A., Truu J. Complementary seminovaginal microbiome in couples. Research in Microbiology, 2015, 166(5): 440-447 (doi: 10.1016/j.resmic.2015.03.009).
  • Borovkova N., Korrovits P., Ausmees K., Turk S., Joers K., Punab M., Mändar R. Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe, 2011, 17(6): 414-418 (doi: 10.1016/j.anaerobe.2011.04.015).
  • Eschenbach D.A., Patton D.L., Hooton T.M., Meier A.S., Stapleton A., Aura J., Agnew K. Effects of vaginal intercourse with and without a condom on vaginal flora and vaginal epithelium. The Journal of Infectious Diseases, 2001, 183(6): 913-918 (doi: 10.1086/319251).
  • Leppaluoto P.A. Bacterial vaginosis: what is physiological in vaginal bacteriology? An update and opinion. Acta Obstetricia et Gynecologica Scandinavica, 2011, 90(12): 1302-1306 (doi: 10.1111/j.1600-0412.2011.01279.x).
  • Robertson S.A., Sharkey D.J. Seminal fluid and fertility in women. Fertility and Sterility, 2016, 106(3): 511-519 (doi: 10.1016/j.fertnstert.2016.07.1101).
Еще
Статья обзорная