Миокин ирисин - молекулярный сигнал, опосредующий благотворное влияние физической активности на функции мозга и циркадианную систему (обзор)

Автор: Инюшкин А.Н., Павленко С.И., Исакова Т.С., Конашенкова А.Т., Инюшкин А.А.

Журнал: Человек. Спорт. Медицина @hsm-susu

Рубрика: Физиология

Статья в выпуске: 1 т.24, 2024 года.

Бесплатный доступ

Цель: обзор современных данных о центральной активности миокина ирисина.

Ирисин, физическая активность, ось «мышцы – мозг», функции мозга, циркадианные ритмы, супрахиазматическое ядро

Короткий адрес: https://sciup.org/147243309

IDR: 147243309   |   DOI: 10.14529/hsm240107

Список литературы Миокин ирисин - молекулярный сигнал, опосредующий благотворное влияние физической активности на функции мозга и циркадианную систему (обзор)

  • Арушанян, Э.Б., Попов А.В. Современные представления о роли супрахиазматических ядер гипоталамуса в организации суточного периодизма физиологических функций // Успехи физ. наук. 2011. Т. 42, № 4. С. 39–58. [Arushanian E.B., Popov A.V. [Recent Data About the Role of Hypothalamic Suprachiasmatic Nucleus in Circadian Organization of Physiological Functions]. Uspehi fiziologicheskih nauk [Progress in Physiological Science], 2011, vol. 42, no. 4, pp. 39–58. (in Russ.)]
  • Радугин Ф.М., Тимкина Н.В., Каронова Т.Л. Метаболические свойства ирисина в норме и при сахарном диабете // Ожирение и метаболизм. 2022. Т. 19, № 3. С. 332–339. [Radugin F.M., Timkina N.V., Karonova T.L. [Metabolic Properties of Irisin in Health and in Diabetes Mellitus]. Ozhirenie i metabolizm [Obesity and Metabolism], 2022, vol. 19, no. 3, pp. 332–339. (in Russ.)] DOI: 10.14341/omet12899
  • Smith P.J., Blumenthal J.A., Hoffman B.M. et al. Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosomatic Medicine, 2010, vol. 72, pp. 239–252. DOI: 10.1097/PSY.0b013e3181d14633
  • Bostrom P., Wu J., Jedrychowski M.P. et al. A PGC1α-Dependent Myokine that Drives Browning of White Fat and Thermogenesis. Nature, 2012, vol. 481, pp. 463–468. DOI: 10.1038/nature10777
  • Ashton A., Foster R.G., Jagannath A. Photic Entrainment of the Circadian System. International Journal of Molecular Sciences, 2022, vol. 23, art. 729. DOI: 10.3390/ijms23020729
  • Zsuga J., More C.E., Erdei T. et al. Blind Spot for Sedentarism: Redefining the Diseasome of Physical Inactivity in View of Circadian System and the Irisin/BDNF Axis. Frontiers in Neurology, 2018, vol. 9, art. 818. DOI: 10.3389/fneur.2018.00818
  • Oguri Y., Shinoda K., Kim H. et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, vol. 182, pp. 563–577. DOI: 10.1016/j.cell.2020.06.021
  • Bilu C., Frolinger-Ashkenazi T., Einat H. et al. Effects of Photoperiod and Diet on BDNF Daily Rhythms in Diurnal Sand Rats. Behavioural Brain Research, 2022, vol. 418, art. 113666. DOI: 10.1016/j.bbr.2021.113666
  • Islam M.R., Valaris S., Young M.F. et al. Exercise Hormone Irisin is a Critical Regulator of Cognitive Function. Nature Metabolism, 2021, vol. 3, pp. 1058–1070. DOI: 10.1038/s42255-021-00438-z
  • Lourenco M.V., Frozza R.L., de Freitas G.B. et al. Exercise-Linked FNDC5/Irisin Rescues Synaptic Plasticity and Memory Defects in Alzheimer’s Models. Nature Medicine, 2019, vol. 25, pp. 165–175. DOI: 10.1038/s41591-018-0275-4
  • Waseem R., Shamsi A., Mohammad T. et al. FNDC5/Irisin: Physiology and Pathophysiology. Molecules, 2022, vol. 27, art. 1118. DOI: 10.3390/molecules27031118
  • Hastings M.H., Brancaccio M., Maywood E.S. Circadian Pacemaking in Cells and Circuits of the Suprachiasmatic Nucleus. Journal of Neuroendocrinology, 2014, vol. 26, pp. 2–10. DOI: 10.1111/jne.12125
  • Hastings M.H., Maywood E.S., Brancaccio M. Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nature Reviews Neuroscience, 2018, vol. 19, pp. 453–469. DOI: 10.1038/s41583-018-0026-z
  • Zhang W., Chang L., Zhang C. et al. Irisin: a Myokine with Locomotor Activity. Neuroscience Letters, 2015, vol. 595, pp. 7–11. DOI: 10.1016/j.neulet.2015.03.069
  • Estell E.G., Le P.T., Vegting Y. et al. Irisin Directly Stimulates Osteoclastogenesis and Bone Resorption In Vitro and In Vivo. eLife, 2020, vol. 9, art. e58172. DOI: 10.7554/eLife.58172
  • Qiao X., Nie Y., Ma Y. et al. Irisin Promotes Osteoblast Proliferation and Differentiation via Activating the MAP Kinase Signaling Pathways. Scientific Reports, 2016, vol. 6, art. 18732. DOI: 10.1038/srep18732
  • Bi J., Zhang J., Ren Y. et al. Irisin Reverses Intestinal Epithelial Barrier Dysfunction During Intestinal Injury via Binding to the Integrin αVβ5 Receptor. Journal of Cellular and Molecular Medicine, 2020, vol. 24, pp. 996–1009. DOI: 10.1111/jcmm.14811
  • Zhang Y., Li R., Meng Y. et al. Irisin Stimulates Browning of White Adipocytes Through Mitogen-Activated Protein Kinase p38 MAP Kinase and ERK MAP Kinase Signaling. Diabetes, 2014, vol. 63, pp. 514–525. DOI: 10.2337/db13-1106
  • Jodeiri Farshbaf M., Alvina K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Frontiers in Aging Neuroscience, 2021, vol. 13, art. 649929. DOI: 10.3389/fnagi.2021.649929
  • Mendoza G., Merchant H. Motor System Evolution and the Emergence of High Cognitive Functions. Progress in Neurobiology, 2014, vol. 122, pp. 73–93. DOI: 10.1016/j.pneurobio.2014.09.001
  • Rabiee F., Lachinani L., Ghaedi S. et al. New Insights into the Cellular Activities of Fndc5/Irisin and its Signaling Pathways. Cell & Bioscience, 2020, vol. 10, art. 51. DOI: 10.1186/s13578-020-00413-3
  • Park H., Poo M.M. Neuroprophin Regulation of Neural Circuit Development and Function. Nature Review Neurocsience, 2013, vol. 14, pp. 7–23. DOI: 10.1038/nrn3379
  • Pascoe M.C., Parker A.G. Physical Activity and Exercise as a Universal Depression Prevention in Young People: A Narrative Review. Early Intervention in Psychiatry, 2019, vol. 13, pp. 733–739. DOI: 10.1111/eip.12737
  • Santos-Lozano A., Pareja-Galeano H., Sanchis-Gomar F. et al. Physical Activity and Alzheimer Disease: A Protective Association. Mayo Clinic Proceedings, 2016, vol. 91, pp. 999–1020. DOI: 10.1016/j.mayocp.2016.04.024
  • Maak S., Norheim F., Drevon C.A. et al. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews, 2021, vol. 42, pp. 436–456. DOI: 10.1210/endrev/bnab003
  • Lu Y., Bu F.-Q., Wang F. et al. Recent Advances on the Molecular Mechanisms of Exercise‑Induced Improvements of Cognitive Dysfunction. Translational Neurodegeneration, 2023, vol. 12, art. 9. DOI: 10.1186/s40035-023-00341-5
  • Schulkin J. Evolutionary Basis of Human Running and its Impact on Neural Function. Frontiers in Systems Neuroscience, 2016, vol. 10, art. 59. DOI: 10.3389/fnsys.2016.00059
  • Tahara Y., Aoyama S., Shibata S. The Mammalian Circadian Clock and its Entrainment by Stress and Exercise. Journal of Physiological Sciences, 2017, vol. 67, pp. 531–534. DOI: 10.1007/ s12576-016-0450-7
  • Burtscher J., Millet G.P., Place N. et al. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. International Journal of Molecular Sciences, 2021, vol. 22, art. 6479. DOI: 10.3390/ijms22126479
  • Li D.J., Li Y.H., Yuan H.B. et al. The Novel Exercise-Induced Hormone Irisin Protects Against Neuronal Injury via Activation of the Akt and ERK1/2 Signaling Pathways and Contributes to the Neuroprotection of Physical Exercise in Cerebral Ischemia. Metabolism, 2017, vol. 68, pp. 31–42. DOI: 10.1016/j.metabol.2016.12.003
  • Schroeder A.M., Truong D., Loh D.H. et al. Voluntary Scheduled Exercise Alters Diurnal Rhythms of Behaviour, Physiology and Gene Expression in Wild-Type and Vasoactive Intestinal Peptide-Deficient Mice. Journal of Physiology, 2012, vol. 590, pp. 6213–6226. DOI: 10.1113/jphysiol.2012.233676
  • Weinert D., Schottner K. An Inbred Lineage of Djungarian Hamsters with a Strongly Attenuated Ability to Synchronize. Chronobiology Interbational, 2007, vol. 24, pp. 1065–1079. DOI: 10.1080/07420520701791588
  • Wrann C.D. FNDC5/Irisin – Their Role in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. Brain Plasticity, 2015, vol. 1, pp. 55–61. DOI: 10.3233/BPL-150019
  • Wu J., Spiegelman B.M. Irisin ERKs the Fat. Diabetes, 2014, vol. 63, pp. 381–383. DOI: 10.2337/db13-1586
  • Zhang J., Zhang W. Can Irisin Be a Linker Between Physical Activity and Brain Function? BioMolecular Concepts, 2016, vol. 7, pp. 253–258. DOI: 10.1515/bmc-2016-0012
Еще
Статья обзорная