Мирицетин как перспективный флавоноид с мультитаргетной биологической активностью

Автор: Чиряпкин А.С.

Журнал: Juvenis scientia @jscientia

Рубрика: Обзорные статьи

Статья в выпуске: 1 т.10, 2024 года.

Бесплатный доступ

Полифенольные соединения широко представлены в объектах растительного происхождения и обладают разносторонними видами биологической активности. С давних времён известно благоприятное влияние на здоровье человека различных галеновых препаратов, которые ранее выступали в роли чуть ли не единственных средств лечения различных заболеваний и улучшения самочувствия. Мажорными компонентами многих лекарственных средств растительного происхождения являются флавоноиды, которые представлены как индивидуальными структурами, так и структурами, связанными с углеводными компонентами. Одним из широко представленных в растениях флавоноидов является мирицетин. Эта молекула является одной из наиболее гидроксилированных и обладает широким спектром терапевтических эффектов. В данном обзоре обобщены современные сведения об антиоксидантной, противодиабетической, противовоспалительной, противовирусной, нейропротекторной, противоопухолевой, гепатопротекторной активности мирицетина и его влиянии на функционирование сердечно-сосудистой системы. Результаты изучения его биологической активности показывают, что данное полифенольное соединение является перспективным веществом для профилактики и комплексной терапии различных заболеваний. Следует отметить, что мирицетин можно рассматривать в качестве потенциального кандидата для целенаправленного конструирования новых веществ с более выраженными фармакологическими эффектами. Исследуемый флавоноид также находит применение в различных биологически активных добавках и продуктах питания, что расширяет перспективность его изучения.

Еще

Флавоноиды, мирицетин, биологическая активность, механизм действия

Короткий адрес: https://sciup.org/14129947

IDR: 14129947   |   DOI: 10.32415/jscientia_2024_10_1_5-18

Список литературы Мирицетин как перспективный флавоноид с мультитаргетной биологической активностью

  • Shen N, Wang T, Gan Q, et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry. 2022;383:132531. DOI: 10.1016/j.foodchem.2022.132531.
  • Roy A, Khan A, Ahmad I, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International. 2022;2022:5445291. DOI: 10.1155/2022/5445291.
  • Taheri Y, Suleria HAR, Martins N, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complementary Medicine and Therapies. 2020;20(1):241. DOI:10.1186/ s12906-020-033-z.
  • Chen L, Cao H, Huang Q, et al. Absorption, metabolism and bioavailability of flavonoids: A review. Critical reviews in food science and nutrition. 2022;62(28):7730-7742. DOI: 10.1080/10408398.2021.1917508.
  • Чиряпкин А.С., Золотых Д.С., Поздняков Д.И. Обзор биологической активности флавоноидов: кверцетина и кемпферола // Juvenis Scientia. 2023. Т. 9, № 2. С. 5-20. [Chiriapkin АС, Zolotykh DS, Pozdnyakov DI. Review of Biological Activity of Flavonoids: Quercetin and Kaempferol. Juvenis Scientia. 2023;9(2):5-20. (in Russ.)]. DOI: 10.32415/jscientia_2023_9_2_5-20. EDN: WCLBZG.
  • Song X, Tan L, Wang M, et al. Myricetin: A review of the most recent research. Biomedicine & Pharmacotherapy. 2021;134:111017. DOI: 10.1016/j.biopha.2020.111017.
  • Imran M, Saeed F, Hussain G, et al. Myricetin: A comprehensive review on its biological potentials. Food Science & Nutrition. 2021;00:1-15. DOI: 10.1002/fsn3.2513.
  • Chobot V, Hadacek F. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Report. 2011;16(6):242-247. DOI: 10.1179/1351000211y.0000000015.
  • Wang ZH, Ah Kang K, Zhang R. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environmental Toxicology and Pharmacology. 2010;29(1):12-18. DOI: 10.1016/j.etap.2009.08.007.
  • Zhang C, Zhang G, Liao Y, et al. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase. Food Chemistry. 2017;221:1569-1577. DOI: 10.1016/j.foodchem.2016.10.136.
  • Barzegar A. Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems. Mol Biol Res Commun. 2016;5(2):87-95.
  • Firuzi O, Lacanna A, Petrucci R, et al. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochimica et Biophysica Acta (BBA) - General Subjects. 2005;1721(1-3):174-184. DOI: 10.1016/j.bbagen.2004.11.001.
  • Yang L, Gao Y, Gong J, et al. Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction. Food Frontiers. 2022;3(4):749-772. DOI: 10.1002/fft2.152.
  • Li Y, Zheng X, Yi X, et al. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. The FASEB Journal. 2017;31(6):2603-2611. DOI: 10.1096/fj.201601339r.
  • Meng Y, Su A, Yuan S, et al. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of a-Amylase and a-Glucosidase. Plant Foods for Human Nutrition. 2016;71(4):444-449. DOI: 10.1007/s11130-016-0581-2.
  • Kang SJ, Park JHY, Choi HN, et al. a-glucosidase inhibitory activities of myricetin in animal models of diabetes mellitus. Food Science and Biotechnology. 2015;24(5):1897-1900. DOI: 10.1007/s10068-015-0249-y.
  • Zelus C, Fox A, Calciano A, et al. Myricetin inhibits islet amyloid polypeptide (IAPP) aggregation and rescues living mammalian cells from IAPP toxicity. The Open Biochemistry Journal. 2012;6:66. DOI: 10.2174/1874091X01206010066.
  • Kandasamy N, Ashokkumar N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats. Toxicology and Applied Pharmacology. 2014;279(2):173-185. DOI: 10.1016/j.taap.2014.05.014.
  • Karunakaran U, Elumalai S, Moon JS, et al. Myricetin Protects Against High Glucose-Induced fi-Cell Apoptosis by Attenuating Endoplasmic Reticulum Stress via Inactivation of Cyclin-Dependent Kinase 5. Diabetes & Metabolism Journal. 2019;43(2):192. DOI: 10.4093/dmj.2018.0052.
  • Ozcan F, Ozmen A, Akkaya B, et al. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clinical and Experimental Medicine. 2011;12(4):265-272. DOI: 10.1007/s10238-011-0167-0.
  • Zhao Z, Chen Y, Li X, et al. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora. Biomedicine & Pharmacotherapy. 2022;153:113530. DOI: 10.1016/j.biopha.2022.113530.
  • Ying X, Chen X, Wang T, et al. Possible osteoprotective effects of myricetin in STZ induced diabetic osteoporosis in rats. European Journal of Pharmacology. 2022;153:172805. DOI: 10.1016/j.ejphar.2019.172805.
  • Hou W, Hu S, Su Z, et al. Myricetin attenuates LPS-induced inflammation in RAW264.7 macrophages and mouse models. Future Medicinal Chemistry. 2018;10(19):2253-2264. DOI: 10.4155/fmc-2018-0172.
  • Cho BO, Yin HH, Park S, et al. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-kB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimu-latedRAW264.7macrophages. Bioscience, Biotechnology, and Biochemistry. 2016;80(8):1520-1530. DOI: 10.1080/09168451.2016.1171697.
  • Wang SJ, Tong Y, Lu S, et al. Anti-inflammatory Activity of Myricetin Isolated from Myrica rubra Sieb. et Zucc. Leaves. Planta Medica. 2010;76(14):1492-1496. DOI: 10.1055/s-0030-1249780.
  • Jang JH, Lee SH, Jung K, et al. Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. Brain Sciences. 2020;10(1):32. DOI: 10.3390/brainsci10010032.
  • Chen M, Chen Z, Huang D, et al. Myricetin inhibits TNF-a-induced inflammation in A549 cells via the SIRT1/NF-KB pathway. Pulmonary Pharmacology & Therapeutics. 2020;65:102000. DOI: 10.1016/j. pupt.2021.102000.
  • Xiao T, Cui M, Zheng C, et al. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Frontiers in Pharmacology. 2021;12:669642. DOI: 10.3389/ fphar.2021.669642.
  • Kan X, Liu B, Guo W, et al. Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. Journal of Cellular Physiology. 2019;234(9):16252-16262. DOI: 10.1002/ jcp.28288.
  • Zhang MJ, Su H, Yan JY, et al. Chemopreventive effect of Myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomedicine & Pharmacotherapy. 2018;97:1131-1137. DOI: 10.1016/j.biopha.2017.11.018.
  • Yao Q, Li S, Li X, et al. Myricetin modulates macrophage polarization and mitigates liver inflammation and fibrosis in a murine model of nonalcoholic steatohepatitis. Frontiers in Medicine. 2020;7:71. DOI: 10.3389/ fmed.2020.00071.
  • Hu S, Zhang Y, Dang B, et al. Myricetin alleviated immunologic contact urticaria and mast cell degranulation via the PI3K/Akt/NF-KB pathway. Phytotherapy Research. 2023;37(5):2024-2035. DOI: 10.1002/ptr.7726.
  • Godse S, Mohan M, Kasture V, et al. Effect of myricetin on blood pressure and metabolic alterations in fructose hypertensive rats. Pharmaceutical Biology. 2010;48(5):494-498. DOI: 10.3109/13880200903188526.
  • Borde P, Mohan M, Kasture S. Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Natural Product Research. 2011;25(16):1549-1559. DOI: 10.1080/14786410903335190.
  • Qiu Y, Cong N, Liang M, et al. Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovascular Toxicology. 2016;17(3):277-286. DOI: 10.1007/s12012-016-9382-y.
  • Liao H, Zhang N, Meng Y, et al. Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/ MAPK and Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2019;2019:1-14. DOI: 10.1155/2019/6304058.
  • Angelone T, Pasqua T, Di Majo D, et al. Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavonols. Nutrition, Metabolism and Cardiovascular Diseases. 2011;21(5):362-371. DOI: 10.1016/j.numecd.2009.10.011.
  • Ortega JT, Suarez AI, Serrano ML, et al. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Research and Therapy. 2017;14(1):57. DOI: 10.1186/s12981-017-0183-6.
  • Pasetto S, Pardi V, Murata RM. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model. PLoS ONE. 2014;9(12):e115323. DOI: 10.1371/journal.pone.0115323.
  • Agrawal PK, Agrawal C, Blunden G. Antiviral and Possible Prophylactic Significance of Myricetin for COVID-19. Natural Product Communications. 2023;18(4):1934578X231166283. DOI: 10.1177/1934578X231166283.
  • Xiao T, Cui M, Zheng C, et al. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Frontiers in Pharmacology. 2021;12:669642. DOI: 10.3389/ fphar.2021.669642.
  • Yu M-S, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARScoronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters. 2012;22(12):4049-4054. DOI: 10.1016/j.bmcl.2012.04.081.
  • Chen Y, Li P, Su S, et al. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1,2,4-triazoleSchiff base. RSC Advances. 2019;9(40):23045-23052. DOI: 10.1039/c9ra05139b.
  • Xue W, Tang X, Zhang C, et al. Synthesis and Antiviral Activity of Novel Myricetin Derivatives Containing a Ferulic Acid Amide Scaffolds. New Journal of Chemistry. 2021;12:669642. DOI: 10.1039/c9nj05867b.
  • Li W, Xu C, Hao C, et al. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Research. 2020;177:104714. DOI: 10.1016/j.antivi-ral.2020.1047.
  • Lim H, Nguyen TTH, Kim NM, et al. Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnology Letters. 2016;39(3):415-421. DOI: 10.1007/ s10529-016-2261-6.
  • Peng S, Fang C, He H, et al. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease. Poultry Science. 2022;101(3):101626. DOI: 10.1016/j.psj.2021.101626.
  • Ramezani M, Darbandi N, Khodagholi F, et al. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease. Neural regeneration research. 2016;11(12):1976. DOI: 10.4103/1673-5374.197141.
  • Wang B, Zhong Y, Gao C, et al. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron. Biochemical and Biophysical Research Communications. 2017;490(2):336-342. DOI: 10.1016/j.bbrc.2017.06.045.
  • Sun L, Xu P, Fu T, et al. Myricetin against ischemic cerebral injury in rat middle cerebral artery occlusion model. Molecular Medicine Reports. 2018;17(2):3274-3280. DOI: 10.3892/mmr.2017.8212.
  • Wu S, Yu Y, Peng A, et al. Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food & Function. 2016;7(6):2624-2634. DOI: 10.1039/c6fo00419a.
  • Hamdi H, Abid-Essefi S, Eyer J. Neuroprotective effects of Myricetin on Epoxiconazole-induced toxicity in F98 cells. Free Radical Biology and Medicine. 2021;164:154-163. DOI: 10.1016/j.freeradbiomed.2020.12.451.
  • Huang B, Liu J, Ma D, et al. Myricetin prevents dopaminergic neurons from undergoing neuroinflam-mation-mediated degeneration in a lipopolysaccharide-induced Parkinson's disease model. Journal of Functional Foods. 2018;45:452-461. DOI: 10.1016/j.jff.2018.04.018.
  • Ara G, Afzal M, Jyoti S, et al. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson's disease. Current Drug Therapy. 2019;14(1):58-64. DOI: 10.2174/157488 5513666180529114546.
  • Chang Y, Chang CY, Wang SJ, et al. Myricetin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals. Journal of Medicinal Food. 2015;18(5):516-523. DOI: 10.1089/jmf.2014.3219.
  • Sur B, Lee B. Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor. Korean J Physiol Pharmacol. 2022;26(6):415-425. DOI: 10.4196/kjpp.2022.26.6.415.
  • Mirshekar MA, Shahraki M, Najafi R, et al. The ameliorative effects of myricetin on neurobehavioral activity, electrophysiology, and biochemical changes in an animal model of traumatic brain injury. Learning and Motivation. 2019;68:101597. DOI: 10.1016/j.lmot.2019.101597.
  • Sun F, Zhang XY, Ye J, et al. Potential Anticancer Activity of Myricetin in Human T24 Bladder Cancer Cells Both In Vitro and In Vivo. Nutrition and Cancer. 2012;64(4):599-606. DOI: 10.1080/01635581.2012.665564.
  • Xue W, Song BA, Zhao HJ, et al. Novel myricetin derivatives: Design, synthesis and anticancer activity. European Journal of Medicinal Chemistry. 2015;97:155-163. DOI: 10.1016/j.ejmech.2015.04.063.
  • Ci Y, Zhang Y, Liu Y, et al. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytotherapy Research. 2018;32(7):1373-1381. DOI: 10.1002/ptr.6071.
  • Huang H, Chen AY, Rojanasakul Y, et al. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. Journal of Functional Foods. 2015;15:464-475. DOI: 10.1016/j.jff.2015.03.051.
  • Zheng AW, Chen YQ, Zhao LQ, et al. Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells. Oncology Letters. 2017;13(6):4974-4978. DOI: 10.3892/ol.2017.6031.
  • Kim ME, Ha TK, Yoon JH, et al. Myricetin induces cell death of human colon cancer cells via BAX/BCL 2-de-pendent pathway. Anticancer research. 2014;34(2):701-706.
  • Feng J, Chen X, Wang Y, et al. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Molecular and Cellular Biochemistry. 2015;408(1-2):163-170. DOI: 10.1007/s11010-015-2492-1.
  • Wang L, Feng J, Chen X, et al. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell International. 2014;14(1):71. DOI: 10.1186/s12935-014-0071-2.
  • Li M, Chen J, Yu X, et al. Myricetin Suppresses the Propagation of Hepatocellular Carcinoma via Down-Regulating Expression of YAP. Cells. 2019;8(4):358. DOI: 10.3390/cells8040358.
  • Zhang XH, Chen SY, Tang L, et al. Myricetin induces apoptosis in HepG2 cells through Akt/p70S6K/bad signaling and mitochondrial apoptotic pathway. Anticancer Agents Med Chem. 2013;13(10):1575-1581. DOI: 10.2174/1871520613666131125123059.
  • Phillips PA, Sangwan V, Borja-Cacho D, et al. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Letters. 2011;308(2):181-188. DOI: 10.1016/j.canlet.2011.05.002.
  • Ha TK, Jung I, Kim ME, et al. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomedicine & Pharmacotherapy. 2017;91:378-384. DOI: 10.1016/j.biopha.2017.04.100.
  • Pan H, Hu Q, Wang J, et al. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity. Biochemical and Biophysical Research Communications. 2016;477(4):915-922. DOI: 10.1016/j.bbrc.2016.06.158.
  • Rostami A, Baluchnejadmojarad T, Roghani M. Hepatoprotective Effect of Myricetin following Lipopolysaccharide/D Galactosamine: Involvement of Autophagy and Sirtuin 1. Current Molecular Pharmacology. 2023;16(3):419-433. DOI: 10.2174/1874467215666220614101721.
  • Lv H, An B, Yu Q, et al. The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. International Journal of Biological Macromolecules. 2020;155:1092-1104. DOI: 10.1016/j.ijbiomac.2019.11.075.
  • Xia SF, Qiu YY, Chen LM, et al. Myricetin alleviated hepatic steatosis by acting on microRNA-146b/thyroid hormone receptor b pathway in high-fat diet fed C57BL/6J mice. Food Funct. 2019;10(3):1465-1477. DOI: 10.1039/c8fo01452c
  • Huang P, Zhou M, Cheng S, et al. Myricetin Possesses Anthelmintic Activity and Attenuates Hepatic Fibrosis via Modulating TGF-1 and Akt Signaling and Shifting Th1/Th2 Balance in Schistosoma japonicum-Infected Mice. Frontiers in Immunology. 2020;11:593. DOI: 10.3389/fimmu.2020.00593.
Еще
Статья обзорная