Модель цифрового изображения на основе модифицированного метода Уорда кластеризации пикселей
Автор: Ханыков Игорь Георгиевич, Харинов Михаил Вячеславович
Журнал: Вестник Бурятского государственного университета. Математика, информатика @vestnik-bsu-maths
Рубрика: Математическое моделирование и обработка данных
Статья в выпуске: 2, 2017 года.
Бесплатный доступ
В статье рассматривается модель детектирования дихотомической иерархии объектов на изображении, предназначенная для предобработки изображений сцен любого содержания. В основе модели лежит метод Уорда кластеризации пикселей. Предусматривается тестирование результатов на правдоподобие посредством обработки стереопар. Обсуждаются особенности применения метода Уорда для кластеризации пикселей. Выполняется сравнение с известным решением, принятым в качестве прототипа.
Сегментация изображения, кластеризация пикселей, суммарная квадратичная ошибка, минимизация, кусочно-постоянное приближение, иерархическая последовательность, выпуклая последовательность значений, двухмасштабная модель, метод уорда, модель мамфорда-шаха
Короткий адрес: https://sciup.org/14835221
IDR: 14835221 | DOI: 10.18101/2304-5728-2017-2-61-70
Список литературы Модель цифрового изображения на основе модифицированного метода Уорда кластеризации пикселей
- Чочиа П.А. Некоторые алгоритмы обнаружения объектов на основе двухмасштабной модели изображения//Информационные процессы. 2014. Т. 14, № 2. С. 117-136.
- Чочиа П.А. Теория и методы обработки видеоинформации на основе двухмасштабной модели изображения: дисc.. д-ра техн. наук. М.: ИППИ РАН, 2016. 302 с.
- Ward J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963. Vol. 58, Issue 301. P. 236-244.
- Айвазян C.A., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификация и снижение размерности. М.: Финансы и статистика, 1989. 607 с.
- Мандель И.Д. Кластерный анализ. М.: Финансы и статистика, 1988. 176 с.
- Jain A.K., Murty M.N., Flynn P.J. Data clustering: a review//ACM computing surveys (CSUR). 1999. Vol. 31, № 3. P. 264-323.
- Харинов М.В., Ханыков И.Г. Применение метода Уорда для кластеризации пикселей цифрового изображения//Вестник Бурятского государственного университета. Математика, информатика. 2016. № 4. С. 34-42.
- Бугаев А.С., Хельвас А.В. Поисковые исследования и разработка методов и средств анализа и автоматического распознавания потоковой информации в глобальных информационных системах. Шифр «Лацкан»//Отчет по НИР. М.: Изд-во МФТИ, 2001. Т. 1. 140 с.
- Mumford D., Shah J. Boundary detection by minimizing functionals, I//Proc. IEEE Comput. Vision Patt. Recogn. Conf., San Francisco, 1985. P. 22-26.
- Jenatton R., Gramfort A., Michel V., Obozinski G., Eger E., Bach F., Thirion B. Multiscale mining of fMRI data with hierarchical structured sparsity//SIAM Journal on Imaging Sciences. 2012. Vol. 5, №. 3. P. 35-856.
- Mumford D., Shah J. Boundary detection by minimizing functionals, I//Proc. IEEE Comput. Vision Patt. Recogn. Conf., San Francisco, 1985. P. 22-26.
- Bar L., Chan T.F., Chung G., Jung M., Vese L.A., Kiryati N., Sochen N. Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration. Handbook of Mathematical Methods in Imaging. 2015. P. 1539-1597.
- Визильтер Ю.В., Желтов С.Ю. Проблемы технического зрения в современных авиационных системах//Механика, управление и информатика. 2011. № 6. С. 11-44.
- Луцив В.Р. Объектно-независимый подход к структурному анализу изображений: дис.. д-ра техн. наук. СПб.: ГУАП, 2011. 318 с.
- Philipp Galiano, Mikhail Kharinov, Victor Kuzenny. Remote Sensing Data Analysis Based on Hierarchical Image Approximation with Previously Computed Segments//Information Fusion and Geographic Information Systems: Towards the Digital Ocean (IF&GIS’2011)/Proceedings of the Fifth International Workshop 10-11May, 2011, Brest (France): Springer, LNG&C. P. 105-115.