Modeling of gallium arsenide surface acoustic wave devices

Автор: Carstensen D. bdewadt, Christensen T. amby, Willatzen Morten, Santos P.V.

Журнал: Техническая акустика @ejta

Статья в выпуске: т.7, 2007 года.

Бесплатный доступ

A Surface-Acoustic Wave (SAW) device has been modeled employing a secondorder Lagrangian finite-element method. The model is able to describe SAW response variations with arbitrary orientation of the unit crystal cell as compared to the macroscopic device geometry and hence allows for fast SAW design optimization. The model is used to determine the resonance frequency of different SAW device structures. The finite-element results are compared with independent analytical results obtained for two configurations of the applied electrode voltages. In order to obtain significant excitation of SAWs, it is preferable to have the electrode fingers oriented along the [110] crystal axis direction, which is the direction along the x=y line with z constant. Indeed, characteristics of normal displacement amplitudes as a function of rotation angle between the crystal axes and the electrode fingers at a fixed frequency albeit independent of the frequency verify that strong SAW excitations take place for rotation angles near 45 degrees corresponding to the [110] direction. Computations of various eigenmodes of both Rayleigh and Lamb type are discussed.

Еще

Piezoelectric, saw, gaas, zincblende, rotation

Короткий адрес: https://sciup.org/14316079

IDR: 14316079

Список литературы Modeling of gallium arsenide surface acoustic wave devices

  • C. C. W. Ruppel and T. A. Fjeldly. Advances in Surface Acoustic Wave Technology, Systems and Applications-1. Selected Topics in Electronics and Systems, World Scientific, 19 (2000).
  • C. K. Campbell. Surface Acoustic Wave Devices for Mobile and Wireless Communications. Applications of Modern Acoustics, Academic Press (1998).
  • M. J. Hoskins, H. Morkoc and B. J. Hunsinger. Surface acoustic wave on the (112) cut [110] direction of gallium arsenide. Appl. Phys. Lett., 41, 332 (1982).
  • C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Bohm and G. Weimann. Acoustically Driven Storage of Light in a Quantum Well. Phys. Rev. Lett., 78, 4099 (1997).
  • P. V. Santos. Collinear light modulation by surface acoustic waves in laterally structured semiconductors. Journal of Applied Physic, 89, 5060 (2001).
  • M. M. de Lima, Jr., R. Hey and P. V. Santos. Appl. Phys. Lett., 83, 2997 (2003).
  • F. W. Beil, A. Wixforth and R. H. Blick. Active photonic crystals based on surface acoustic waves. Physica E (Amsterdam), 13, 473 (2002).
  • Y. Takagaki, E. Wiebicke, P. V. Santos, R. Hey and K. H. Ploog. Propagation of surface acoustic waves in a GaAs/AlAs/GaAs heterostructure and micro-beams. Semicond. Sci. Technol., 17, 1008 (2002).
  • A. Gantner, Mathematical modeling and numerical simulation of piezoelectrical agitated surface acoustic waves. Ph.D. Thesis. Faculty of Mathematics and Natural Sciences, University of Augsburg, Germany (2005).
  • B. A. Auld. Acoustic Fields and Waves in Solids, vol. 1 and 2, 2nd edition. Krieger Publishing Company (1990).
  • M. Willatzen. Ultrasound transducer modeling -general theory and applications to ultrasound reciprocal systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 100-112 (2001).
  • M. M. de Lima, Jr., W. Seidel, H. Kostial and P. V. Santos. Embedded interdigital transducers for high-frequency surface acoustic waves on GaAs. Journal of Applied Physic, 96, 3494-3500 (2004).
  • M. M. de Lima, Jr., W. Seidel, F. Alsina and P. V. Santos. Focusing of surface-acoustic-wave fields on [100] GaAs surfaces. Journal of Applied Physics. 94, 7848-7855 (2003).
Еще
Статья научная