Modeling of oil reservoirs heat losses by nanodimensional cellular automata

Автор: Baikov I.R. , Smorodova O.V. , Kitaev S.V., Kuznetsova E.V. , Gizatullina D.T.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Nanotechnologies in power engineering

Статья в выпуске: 3 Vol.11, 2019 года.

Бесплатный доступ

The oil and gas industry plays a crucial role in the Russian economy. One of the ways to increase its energy efficiency is to reduce unproductive losses. Losses of oil and petroleum products occur at all stages of the oil and gas complex from hydrocarbon extraction to processing and transfer to secondary product consumers. Unavoidable losses in the system are caused by losses of oil and oil products from evaporation during excessive heating by solar radiation during storage in tank farms. In the cold season, intensive external cooling with outside air leads to increased product viscosity and increased cost of electricity for its transfer. To avoid such situations, strict maintenance of the temperature regime of the reservoir by minimizing external heat gains and its own heat losses is re-quired. The article describes the simulation of heat transfer through the heat-insulated wall of the oil reservoir of one of the linear main station of oil pumping. The construction of the temperature graph through the outer fence is performed by the method of nanoscale cells of cellular automaton. The simulation was carried out for three dimensions of the field of cells. It is shown that for the task, the optimal structure is a field of 560 simulation cells.

Еще

Thermal conductivity, thermal insulation, cellular automaton, modeling, temperature field

Короткий адрес: https://sciup.org/142227495

IDR: 142227495   |   DOI: 10.15828/2075-8545-2019-11-3-335-350

Список литературы Modeling of oil reservoirs heat losses by nanodimensional cellular automata

  • Karpov A.I. Theses in the area of nanotechnologies and nanomaterials: novelties and practical application. Part 2. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2016, Vol. 8, no. 2, pp. 82–103. DOI: dx.doi.org/10.15828/20758545- 2016-8-2-82-103. (In Russian).
  • Kitayev S.V., Smorodova O.V. Matematicheskoye modelirovaniye ispareniya szhizhennykh uglevodorodov pri narushenii teplovoy izolyatsii rezervuara [Mathematical modeling of evaporation of liquefied hydrocarbons in violation of the thermal insulation of the reservoir]. Neftegazovoye delo: elektron. nauch. jurn. [Oil and gas business: electron. scient. jour]. 2017. no 1. Pp. 108–120. (In Russian). Available at: http://ogbus.ru/files/ogbus/issues/1_2017/ogbus_1_2017_p108-120_KitaevSV_ru.pdf (accessed: 24.04.2019).
  • Sultanov M.KH., Gimaletdinov G.M., Yumagulov E.O. Rezervuary bol’shikh ob”yemov dlya khraneniya nefti i nefteproduktov [Tanks of large volumes for the storage of oil and oil prod-ucts]. Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, prep-aration and transport of oil and oil products]. 2008. no1(71). Pp. 46–48. (In Russian). Available at: https://elibrary.ru/download/elibrary_11639733_60479104.pdf (accessed: 24.04.2019).
  • Sultanov M.KH., Gimaletdinov G.M., Sattarova D.M. Sovershenstvovaniye konstruktsiy oborudovaniya rezervuarov [Improving the design of equipment tanks]. Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, preparation and transport of oil and oil products]. 2004. no. 63. Pp. 149–152. (In Russian). Available at: https://elibrary.ru/ download/elibrary_11528514_83829171.pdf (accessed: 24.04.2019).
  • Bronshteyn A.I., Zhuravlev G.V. Otsenka zavisimosti fraktsionnogo sostava nefti ot kolichestva isparivshikhsya uglevodorodov [Evaluation of the dependence of the fractional compo-sition of oil on the amount of evaporated hydrocarbons]. Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, preparation and transport of oil and oil products]. 2007. №2(68). С. 95–97. (In Russian). Available at: https://elibrary.ru/download/elibrary_11639686_65918710.pdf (accessed: 24.04.2019).
  • Luk’yanova I.E. Issledovaniye rabotosposobnosti rezervuara RVS dlya khraneniya nefti i nefteproduktov s ispol’zovaniyem programmnogo paketa FLOWVISION [Investigation of the RVS reservoir working capacity for the storage of oil and petroleum products using the FLOWVISION software package]// Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, preparation and transport of oil and oil products]. 2009. №3(77). С. 63–66. (In Russian). Available at: https://elibrary. ru/download/elibrary_13004713_56933267.pdf (accessed: 24.04.2019).
  • Baykov I.R., Smorodova O.V., Kitayev S.V. Issledovaniye svoystv zhidkikh keramicheskikh teploizolyatsionnykh materialov [Research of the properties of liquid ceramic heat-insulating materials]. Nanotekhnologii v stroitel’stve [Nanotechnologies in construction: a scientific online journal]. 2018. Vol. 10. no. 5. Pp. 106–121. (In Russian). Available at: https://elibrary.ru/download/ elibrary_36402454_18899972.pdf (accessed: 24.04.2019).
  • Konygin S.B. Razrabotka metoda veroyatnostnogo kletochnogo avtomata dlya modelirovaniya protsessov i oborudovaniya v neftegazovoy otrasli [Development of a probabilistic cellular automaton method for modeling processes and equipment in the oil and gas industry]. Neft’. Gaz. Novatsii [Oil. Gas. Innovations]. 2011. no. 1 (144). Pp. 66–68. (In Russian).
  • Zhikharevich V.V., Shumilyak L.M. Approksimatsiya resheniya nestatsionarnogo uravneniya teploprovodnosti metodom veroyatnostnykh nepreryvnykh asinkhronnykh kletochnykh avtomatov dlya odnomernogo sluchaya [Approximation of the solution of the nonstationary heat conduction equation by the method of probabilistic continuous asynchronous cellular automata for a one-dimensional case]. Komp’yuternyye issledovaniya i modelirovaniye [Computer Research and Modeling]. 2012. Vol. 4. no. 2. Pp. 293–301. (In Russian). Available at: https://elibrary.ru/download/elibrary_17863045_63493478.pdf (accessed: 24.04.2019).
  • Gubarev S.V., Berg D.B., Dobryak P.V. Matematicheskaya model’ i chislennyy metod dlya resheniya zadach diffuzii i teploprovodnosti [Mathematical model and numerical method for solving problems of diffusion and heat conduction]. Sovremennyye problemy nauki i obrazovaniya [Modern problems of science and education]. 2013. no. 6. Pp. 176. (In Russian). Available at: https://elibrary.ru/download/elibrary_21162608_63207833.pdf (accessed: 24.04.2019).
  • Zhikharevich V.V., Shumilyak L.M., Strutinskaya L.T., Ostapov S.E Postroyeniye i issledovaniye nepreryvnoy kletochnoavtomatnoy modeli protsessov teploprovodnosti s fazovymi perekhodami pervogo roda [Building and researching a continuous cellular-automaton model of heat conduction processes with first-order phase transitions]. Komp’yuternyye issledovaniya i modelirovaniye [Computer Research and Modeling]. 2013. Vol. 5. no. 2. Pp. 141–152. (In Russian). Available at: https://elibrary.ru/ download/elibrary_20143227_78114907.pdf (accessed: 24.04.2019).
  • Droz М., Chopard В. Cellular Automata approach to physical problems. Helvetica Physica Acta, 1988, V. 61, pр. 801–816.
  • Bandman O. L. Kletochno-avtomatnyye modeli prostranstvennoy dinamiki [Cellular au-tomata models of spatial dynamics]. Sistemnaya informatika [System Informatics]. 2005. Vol. 10. Pp. 57–113. (In Russian).
  • Parodi O., Ottavi Н. Simulating the Ising model on a cellular automata. Cellular Au-tomata and Modeling of Complex Physical Systems, ed. by P.Manneville, Springer, Berlin, 1990. Pр. 82–97.
  • Wolfram S. A New Kind of Science. Wolfram Media, Inc., 2002.
  • Neary T., Woods D. Four Small Universal Turing Machines. Fundamenta Informaticae. 2009. Vol. 91. Рр. 105–126.
  • Sokolov I.A., Milovidova A.A. Obzor svoystv kletochnykh avtomatov, ikh primeneniya [Review of the properties of cellular automata, their applications]. Sistemnyy analiz v nauke i obrazovanii [System analysis in science and education]. 2017. no 1 (35). Pp. 21–31. (In Russian). Available at: https://elibrary.ru/download/elibrary_30599821_75631997.pdf (accessed: 24.04.2019).
  • Wuensche A. Classifying Cellular Automata Automatically; Finding gliders, filtering, and relating space-time patterns, attractor basins, and Z parameter. COMPLEXITY. 1999. Vol.4. no. 3. Pp. 47–66.
  • Packard N. H., Wolfram S. Two-dimensional cellular automata. Journal of Statistical Physics, 1985. Vol. 38. Pр. 901–946.
  • Hopcroft J. E., Motwani R., Ullman J. D. Introduction to Automata Theory, Languages, and Computation (2nd ed.) Addison-Wesley, 2000.
  • Sutner K. Linear cellular automata and De Bruijn automata. In: Cellular Automata: a parallel model (Delorme M., Mazoyer J., Eds.). Kluwer, 1998. 22. Hanson J.E., Crutchfield J.P. Computational mechanics of cellular automata: an exam-ple. Physica D. 1997. Vol. 103, pp. 169–189.
Еще
Статья научная