Modeling of the processes of early structure formation and hardening of cement materials with organomineral additives

Автор: Tarakanov O.V., Erofeeva I.V., Belyakova E.A., Moskvin R.N., Sanyagina Ya.A., Khristoforova I.A.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Construction materials science

Статья в выпуске: 6 Vol.16, 2024 года.

Бесплатный доступ

Introduction. At present, chemical modifiers are widely used in concrete technology, most of which are complex. The development of the theory and practice of high-strength concrete of the new generation has entailed the development and implementation of complex organomineral additives, which include modern superplasticizers (SP) and finely ground mineral fillers. High-strength concretes are multifunctional concretes that combine, along with high strength, other important properties – high frost resistance, water resistance, elastic-plastic properties, etc. Materials and research methods. Achieving high concrete performance is possible through the use of superplasticizers in combination with finely ground microfillers – stone flour, including nanoparticles and dispersed reinforcement. In this article, the main task is to model the development of the microstructure of cement stone with organomineral additives. For this purpose, a model of the development of the microstructure over time was developed taking into account the possible mechanisms of the influence of components on the composition of hydration products and the nature of early structure formation. Results and discussion. It is shown that the analysis of structural topology and modeling of the processes of formation of the microstructure of filled cement compositions, carried out together with the analysis of hydration products and hardening kinetics, allow us to predict possible mechanisms of action of complex additives and, in a certain sense, to predict possible scenarios for the development of the microstructure of cement stone, which largely determines the main physical and chemical properties of concrete and its durability. Conclusion. Experimental studies have shown that the use of a mixture of microfillers made it possible to achieve a concrete compressive strength of more than 115 MPa on the 28th day of normal hardening, and the insertion of calcium silicate hydrous into the concrete mixture increased the early strength of the hardening composite.

Еще

Structure formation, organomineral additives, microfillers, nanohydrosilicate technologies, crystallization centers, high-strength concretes

Короткий адрес: https://sciup.org/142242743

IDR: 142242743   |   DOI: 10.15828/2075-8545-2024-16-6-510-524

Список литературы Modeling of the processes of early structure formation and hardening of cement materials with organomineral additives

  • Alharbi, Y.R., Abadel, A.A., Mayhoub, O.A., & Kohail, M. Effect of using available metakaoline and nanomaterials on the behavior of reactive powder concrete. Construction and Building Materials, 121344. http://doi.org/10.1016/j.conbuildmat.2020.121344
  • Wang, J., Dong, S., Wang, D., Yu, X., Han, B., & Ou, J. Enhanced Impact Properties of Concrete Modified with Nanofiller Inclusions. Journal of Materials in Civil Engineering. 31(5); 04019030. http://doi.org/10.1061/(asce)mt.1943-5533.0002659
  • Wang J., Dong S., Zhou C., Ashour A., Han B. Investigating pore structure of nano-engineered concrete with low-field nuclear magnetic resonance. Journal of Materials Science. 2021; 56(1):243–59.
  • Maroliya M.K. Micro structure analysis of reactive powder concrete. International Journal of. Engineering research and Development. 2012; 4(2):68-77.
  • Edward G. Fundaments of High Performance Concrete / G. Edward, P. Nawy; 2001.
  • Meng W., Khayat K.H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cement and concrete research. 2018; 105:64–71.
  • Wu B., Jin H. Compressive fatigue behavior of compound concrete containing demoulded concrete lumps. Construction and Building Materials 2019; 210:140–56.
  • Wang X., Dong S., Ashour A., Zhang W., Han B. Effect and mechanisms of nanomaterials on the interface between aggregates and cement mortars. Construction and Buildinging Materials 2020; 240:117942.
  • Cassagnabère F., Escadeillas G., Mouret M. Study of the reactivity of cement / metakaolin binders at early age for specifc use in steam cured precast concrete. Construction and Building Materials. 23(2):775-784. http://doi.org/10.1016/j.conbuildmat.2008.02.022
  • Maksimova I.N. Structure and structural strength of cement composites / I.N. Maksimova, N.I. Makridin, V.T. Erofeev, Yu.P. Skachkov. M.: ASV Publishing House; 2017.
  • Mironov S.A. Theory and methods of winter concreting. Moscow: Stroyizdat; 1975.
  • Makridin N.I., Maksimova I.N., Ovsyukova Yu.V. Long-term strength of the modified structure of cement stone. Part 1. Construction materials. 2010; 10: 74-77.
  • Dvorkin L.I., Dvorkin O.L. Fundamentals of Concrete Science. St. Petersburg: Stroy Beton; 2006.
  • Yalçınkaya Ç., Yazıcı H. Effects of ambient temperature and relative humidity on ear-ly-age shrinkage of UHPC with high-volume mineral admixtures. Construction and Building Materials. 2017. http://doi.org/10.1016/j.conbuildmat.2017.03.198
  • Yazici H., Deniz E., Baradan B. The effect of autoclave pressure, temperature and du-ration time on mechanical properties of reactive powder concrete. Construction and Building Materials. 2013; 42:53–63. http://doi.org/10.1016/j.conbuildmat.2013.01.003
  • Shen P., Lu L., Chen W., Wang F., Hu S. Efficiency of metakaolin in steam cured high strength concrete. Construction and Building Materials. 2017; 152:357–66. http://doi.org/10.1016/j. conbuildmat.2017.07.006
  • Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdaltsev O.V. Nanohydrosilicate technologies in concrete production. Construction materials. 2014; 5: 88–91.
  • Hiremath P.N., Yaragal S.C. Effect of different curing regimes and durations on early strength development of reactive powder concrete. Construction and Building Materials. 2017; 154:72–87. http://doi.org/10.1016/j.conbuildmat.2017.07.181
  • Helmi M., Hall M.R., Stevens L.A., Rigby S.P. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation. Construction and Building Materials. 2016; 105:554–62. http://doi.org/10.1016/j.conbuildmat.2015.12.147
  • Arabi N. Formation of C-S-H in calcium hydroxideblast furnace slag-Quartz-water system in autoclaving conditions / N. Arabi, R. Jauberthie, N. Chelghoum, L. Molez. Advances in Cement Research. 2015; 27(3):153–162.
  • Taylor H. Cement Chemistry. Moscow: Mir; 1996.
  • Ratinov V.B., Rosenberg T.I. Additives in concrete. Moscow: Stroyizdat;1989.
  • Ramachadran V.S., Feldman R.F., Collepardi M. et al. Additives to concrete: reference book. allowance. M.: Stroyizdat; 1988.
  • Korenkova S.F., Sheina T.V. Fundamentals and concept of utilization of chemical sludge from industrial wastewater in the construction industry. Samara: Sam. state. architecture-civil. University; 2004.
  • Tarakanov O.V. Cement materials with carbohydrate additives. Penza: Penza State Architectural-Civil Academy; 2003.
  • Tarakanov O.V., Pronina T.V. Hydration and hardening of cement materials with additives of mineral sludge. Penza: Penza State University of Architecture and Civil Engineering; 2006.
  • Zanni H., Cheyrezy M., Maret V., Philippot S., Nieto P. Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR. Cement and Concrete Research. 1996. http://doi.org/10.1016/0008-8846(95)00197-2
  • Kuznetsova T.V. Aluminate and sulfoaluminate cements. Moscow: Stroyizdat; 1986.
  • Sychev M.M. Hardening of binders. L.: Stroyizdat; 1974.
  • Kurdowski W. The Properties of Cement Paste. Cement and concrete chemistry. 2014. http://doi.org/10.1007/978-94-007-7945-7
  • Taylor H. Cement chemistry. Acad. Press; 1990. https://doi.org/10.1016/S0958-9465(98)00023-7.
  • Golewski G.L., Szostak B. Application of the C-S-H phase nucleating agents to im-prove the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry. Materials. 2021; 14(21):6514.
  • Bobrishev A.A., Shafigullin L.N., Erofeev V.T., Treshchev A.A., Sotnikov M.I., Kozin V.A. Study of Effects of Redispersable Latex Powders On Hardening Kinetics of Cement-Sand Composites. Research Journal of Pharmaceutical,Biological and Chemical Sciences, 2016, 7(4):795–802.
  • Erofeev V., Bobryshev A., Lakhno A., Shafigullin L., Khalilov I., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Solid State Phenomena, 2016, 871:96–103.
  • Thomas J.J., Jennings H.M., Chen J.J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. The Journal of Physical Chemistry. 2009; 113(11): 4327-4334. http://doi.org/10.1021/jp809811w
  • Vernigorova V.N. Physicochemical bases of formation of modified calcium hydrosilicates in composite materials based on the Cao-SiO2-H2O system. Penza: CNTI; 2001.
  • Feldman R.F. The effect of sand cement ration and silica fume on the microstructure of mortars / R.F. Feldman. Cement and Concrete Research. 1986;16(3):31–39.
  • Golewski G.L. The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies 2021; 14(3):668.
  • Fedortsov A., Fedortsov V., Ashchepkov M.V., Rusakov K.V., Gladkin S., Erofeev V. Improving the strength and resistance of cement composites to the external environment by utilizing complex additives. E3S Web of Conferences. 2021; 281: 03014. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85144858704&doi=10.1051%2fe3sconf% 2f202128103014&partnerID=40&md5=4503030c26aa434ed0fdb620f11caf62
  • Ji T., Chen C.Y., Zhuang Y.Z. Evaluation method for cracking resistant behavior of reactive powder concrete. Constr Build Mater 2012; 28:45–9. http://doi.org/10.1016/j. conbuildmat.2011.08.060.
  • Aïtcin P.C. Cements of yesterday and today – concrete of tomorrow. Cement and Concrete Research. 2000. http://doi.org/10.1016/S0008-8846(00)00365-3
  • Richard P. Composition of Reactive Powder Concrete. Scientific Division Bougies / P. Richard, M. Cheurezy. Cement and Concrete Research. 1995; 25(7):1501–1511.
  • Sanchez F., Sobolev K. Nanotechnology in concrete – a review. Construction and Building Materials. 2010. http://doi.org/10.1016/j.conbuildmat.2010.03.014
  • Melián G., Barluenga G., Hernández-Olivares F. Toughness increase of self compacting concrete reinforced with polypropylene short fibers. Materials de Construcción. 2010; 60(300). http://doi.org/10.3989/mc.2010.52309
  • Dong S., Wang Y., Ashour A., Han B., Ou J. Uniaxial compressive fatigue behavior of ultra-high performance stainless concrete reinforced with super-fine wires. International Journal of Fatigue. 2021; 142:105959.
  • Richard P., Cheyrezy M. Composition of reactive powder concretes. Cement and Concrete Research. 1995; 25:1501–11. http://doi.org/10.1016/0008-8846(95)00144-2
  • Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials. 2015; 101:741–51. http://doi.org/10.1016/j.conbuildmat.2015.10.088
  • Khozin V.G., Khokhryakov O.V., Sibgatullin I.R. Low water demand carbonate cements. Moscow: ASV Publishing House; 2021.
  • Belov V.V., Smirnov M.A. Formation of the optimal structure of the building mixture. Construction materials. 2009; 9:88-90.
  • Andreasen A.H.M. Ueber die Beziehungen zwischen Kornabstufungen und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten), Kolloid-Zeitschrift 50: 1930; 217–228 (in Ger. Zeitschrif).
  • Funk J.E., Dinger D.R. Predictive Process Control of Crowded Particulate Suspensions, Applied to Ceramic Manufacturing. Bost: Kluwer Acad. Press; 1994.
  • Zheng J., Johnson P.F., Reed J.S. Improved equation of the continuous particle size dis-tribution for dense packing. Journal of the American Ceramic Society. 73(5):1392-1398. https://doi.org/10.1111/j.1151-2916.1990.tb05210.x
  • De Larrard F. Concrete mixture proportioning: a scientific approach. London; New York. 1999. https://doi.org/10.1017/CBO9781107415324.004
  • Goltermann P., Johansen V., Palbøl L. Packing of aggregates: an alternative tool to determine the optimal aggregate mix. ACI Mater J 1997. http://doi.org/10.14359/328
  • De Larrard F. Ultrafine particles for the making of very high strength concretes. Cement and Concrete Research. 1989. http://doi.org/10.1016/0008-8846(89)90079-3
  • Kwan AKH, Chan KW, Wong V. A 3-parameter particle packing model incorporating the wedging effect. Powder Technology. 2013. http://doi.org/10.1016/j.powtec. 2013.01.043
  • Wong V., Kwan A.K.H. A 3-parameter model for packing density prediction of ternary mixes of spherical particles. Powder Technology. 2014. http://doi.org/10.1016/j.powtec.2014.08.036.
  • Roussel N., Geiker M.R., Dufour F., Thrane L.N., Szabo P. Computational modeling of concrete flow: general overview. Cement and Concrete Research. 2007. http://doi.org/10.1016/j.cemconres. 2007.06.007
  • Tarakanov O.V., Akchurin T.K., Belyakova E.A., Moskvin R.N. Expansion of the base of complex organomineral additives in concrete technology. Bulletin of VolGTU. Series: Construction and architecture. 2022; 3 (88):97-107.
  • Garkavi M.S., Fetisova L.A., Shumova L.V. et al. Activation of structure formation during hardening of binders. Achievements, problems and directions of development of the theory and practice of construction materials science. Proceedings of the X Academic Readings of RAASN; 2006.
  • Ebeling V. Formation of structures in irreversible processes. Moscow: Mir; 1979.
  • Zhang W., Han B., Yu X., Ruan Y., Ou J. Nano boron nitride modified reactive powder concrete. Construction and Building Materials. 2018. http://doi.org/10.1016/j.conbuildmat.2018.05.244.
  • Li Z., Di S. The microstructure and wear resistance of microarc oxidation composite coatings containing nanohexagonal boron nitride (HBN) particles. Journal of Materials Engineering and Performance. 2017. 26:1551–1561. http://doi.org/10.1007/s11665-017-2582-1
  • Wang T., Wang M., Fu L., Duan Z., Chen Y., Hou X., et al. Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets. Scientific Reports 8(1). 2018. http://doi.org/10.1038/s41598-018-19945-3
  • Han B.B, Li Z., Zhang L., Zeng S., Yu X., Han B.B, et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2. Construction and Building Materials. 2017; 148:104–12. http://doi.org/10.1016/j.conbuildmat.2017.05.065.
  • Irshidat M.R., Al-Saleh M.H. Thermal performance and resistance of nanoclay modified cementitious materials. Construction and Building Materials. 2018. http://doi.org/10.1016/j.conbuildmat.2017.10.127
  • Yazici H., Yiǧiter H., Karabulut ASß, Baradan B. Utilization of ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel. 2008; 87:2401–7. http://doi.org/10.1016/j.fuel.2008.03.005
  • Bazhenov Yu.M. Concrete technology. Moscow: ASV; 2002.
  • Tarakanov O.V., Belyakova E.A., Kalashnikov V.I., Grintsova O.V. Makridin N.I. The Influence of Plasticizers on the Composition of Cement Stone Hydration Products. International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016). Advances in Engineering Research. 2016; 93:186-191. http://doi.org/10.2991/ISMEMS-16.2016.33
  • Kalashnikov V.I., Nesterov V.Yu., Khvastunov V.L., Komokhov P.G., Solomatov V.I. et al. Clay-slag building materials. Penza; 2000.
  • Samchenko S.V. Formation and genesis of the structure of cement stone [Electronic resource]: Monograph / S.V. Samchenko: Ministry of Education and Science of the Russian Federation. Nat. research. Moscow state construction University. – Electronic data and programs (14 MB). M.: NRU MGSU; 2016.
  • Kalashnikov V.I., Khvastunov L.V., Viktorova O.L., Zhuravlev V.M., Stepanov V.I. Theoretical prerequisites for high surface reactivity of carbonates in the formation of strength of carbonate-cement and carbonate-slag binders. Modern problems of building materials science. V academic readings of RAASN. 1999; Voronezh.
  • Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Time factor in the formation of the phase composition of the structure of cement stone. Regional architecture and construction. 2013; 2 (16):26-31.
  • Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Phase composition and mechanical properties of the modified structure of long-term hardening cement stone. Bulletin of VolgGASU. Series. Construction and architecture. 2013; 31 (50): 136-144.
  • Stark J., Boltzmann K., Seifarth K. Is ettringite a cause of concrete destruction? Cement and its application. 1998; 2:13-22.
  • Tarakanov O.V., Akchurin T.K., Belyakova E.A., Dushko O.V. Prospects for the use of complex organomineral additives in new generation concretes. Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2023; 2(91):88-98.
Еще
Статья научная