Modeling of three-dimensional motion of deformable droplets in Stokes regime using boundary element method

Автор: Abramova Оlga Aleksandrovna, Itkulova Yulia Аyratovna, Gumerov Nail Asgatovich

Журнал: Вычислительная механика сплошных сред @journal-icmm

Статья в выпуске: 2 т.6, 2013 года.

Бесплатный доступ

The paper presents three-dimensional modeling of the dynamics of droplets under the imposed ambient flow in an unbounded domain and a cylindrical channel at low Reynolds numbers using the boundary element method. The obtained results for test cases are compared with the analytical solution for the flow around a single droplet. The inclination angle of drops and their deformation in a shear flow are studied at various parameters. Computational results are compared with experimental and numerical data found in the literature and with the analytical solution within the framework of small strain theory. The problem statement for the periodic motion of droplets in a channel of arbitrary cross-section is developed. Computations of the dynamics of deformable drops of different volumes and arbitrary distribution in a flow are performed.

Еще

Emulsion channel flow, boundary element method, deformable droplets, stokes equations

Короткий адрес: https://sciup.org/14320672

IDR: 14320672

Список литературы Modeling of three-dimensional motion of deformable droplets in Stokes regime using boundary element method

  • Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow. -Cambridge University Press: Cambridge, MA, 1992. -270 р.
  • Kennedy M.R., Pozrikidis C, Skalak R. Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow//Comput. Fluids. -1994. -V. 23, N. 2. -P. 251-278.
  • Loewenberg M., Hinch E.J. Numerical simulation of a concentrated emulsion in shear flow//J. Fluid Mech. -1996. -V. 321. -P. 395-419.
  • Rallison J.M. A numerical study of the deformation and burst of a viscous drop in general shear flows//J. Fluid Mech. -1981. -V. 109. -P. 465-482.
  • Zinchenko A.Z., Rother M.A., Davis R.H. A novel boundary-integral algorithm for viscous interaction of deformable drops//Phys. Fluids. -1997. -V. 9, N. 6. -P. 1493-1511.
  • Иткулова Ю.А. Метод граничных элементов в численном исследовании трехмерных течений Стокса в каналах произвольной формы//Материалы V Российской конф. с международным участием «Многофазные системы: теория и приложения», Уфа, 2-5 июля 2012 г. -Уфа: Нефтегазовое дело, 2012. -Ч. 1. -С. 94-97.
  • Pozrikidis C. Creeping flow in two-dimensional channels//J. Fluid Mech. -1987. -V. 180. -P. 495-514.
  • Boger D.V. Viscoelastic flows through contractions//J. Fluid Mech. -1987. -V. 19. -Р. 157-182.
  • Lubansky A.S., Boger D.V., Servais C. Burbidge A.S. Cooper-White J.J. An approximate solution to flow through a contraction for high Trouton ratio fluids//J. Non-Newton. Fluid. -2007. -V. 144, N. 2-3. -P. 87-97.
  • Coulliette C., Pozrikidis C. Motion of an array of drops through a cylindrical tube//J. Fluid Mech. -1998. -V. 358. -P. 1-28.
  • Davis R.H., Zinchenko A.Z. Motion of deformable drops through granular media and other confined geometries//J. Colloid Interf. Sci. -2009. -V. 334, N. 2. -P. 113-123.
  • Rallison J.M., Acrivos A. A numerical study of the deformation and burst of a viscous drop in an extensional flow//J. Fluid Mech. -1978. -V. 89, N. 1. -P. 191-200.
  • Zinchenko A.Z., Davis R.H. An efficient algorithm for hydrodynamical interaction of many deformable drops//J. Comput. Phys. -2000. -V. 157, N. 2. -P. 539-587.
  • Хаппель Дж., Бреннер Г. Гидродинамика при малых числах Рейнольдса. -М.: Мир, 1976. -623 с.
  • Rumscheidt F.D., Mason S.G. Particle motions in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow//J. Coll. Sci. -1961. -V. 16, N. 3. -P. 238-261.
  • Torza S., Henry C.P., Cox R.G., Mason S.G. Particle motions in sheared suspensions. XXVI. Streamlines in and around liquid drops//J. Colloid Interf. Sci. -1971. -V. 35, N. 4. -P. 529-543.
  • Cox R.G. The deformation of a drop in a general time-dependent fluid flow//J. Fluid Mech. -1969. -V. 37, N. 3. -P. 601-623.
Еще
Статья научная