Моделирование двугорбых кривых вращения газа в осесимметричном гравитационном поле галактик
Автор: Пейч М.М., Морозов А.Г., Хоперсков А.В.
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Физика и астрономия
Статья в выпуске: 3 т.26, 2023 года.
Бесплатный доступ
Представлены результаты построения моделей галактических дисков с так называемыми двугорбыми кривыми вращения газа, когда имеются зоны резкого изменения круговой скорости. Такие модели допускают развитие сдвиговых гидродинамических неустойчивостей, в частности, центробежной неустойчивости и неустойчивости типа акустического резонанса. В построенных моделях внутренний пик скорости вращения связан с наличи- ем околоядерного звездного диска. Изучено влияние параметров модели как внутреннего, так и основного экспоненциального звездного диска на радиальные профили круговой скорости. Развит численный метод, обеспечивающий построение двугорбых кривых вращения с произвольными распределениями поверхностной плотности звездного диска. Сформирована выборка галактик с кривыми вращения, содержащими области резких отрицательных градиентов. Модели этих объектов предназначены для проведения вычислительных экспериментов, направленных на изучение образования спиральных структур вследствие развития гидродинамической неустойчивости. Мы выбрали объекты, кривые вращения которых в центральной области не могут быть смоделированы сфероидальными галактическими балджами, что указывает на наличие особых компонент в составных моделях звездного диска, похожих на околоядерные диски.
Галактики, кривые вращения, гидродинамические неустойчивости, декомпозиция, круговая скорость
Короткий адрес: https://sciup.org/149144550
IDR: 149144550 | DOI: 10.15688/mpcm.jvolsu.2023.3.7
Список литературы Моделирование двугорбых кривых вращения газа в осесимметричном гравитационном поле галактик
- Afanas'ev V.L., Burenkov A.N., Zasov A.V., Sil'chenko O.K. Rotation of Inner Regions of Spiral Galaxies. Astrophysics, 1988, vol. 29, iss. 1, pp. 497-504. DOI: 10.1007/BF01005868
- Blumen W., Drazin P.G., Billings D.F.J. Shear Layer Instability of an Inviscid Compressible Fluid. Part 2. Journal of Fluid Mechanics, 1975, vol. 71, pp. 305-316. DOI: 10.1017/S0022112075002595
- Butenko M.A., Belikova I.V., Kuzmin N.M., Khokhlova S.S., Ivanchenko G.S., Ten A.V., Kudina I.G. Numerical Simulation of the Galaxies Outer Spiral Structure: The Influence of the Dark Halo Non-Axisymmetry on the Gaseous Disk Shape. Mathematical Physics and Computer Simulation, 2022, vol. 25, no. 3, pp. 73-83. DOI: 10.15688/mpcm.jvolsu.2022.3.5
- Criss R.E., Hofmeister A.M. Density Profiles of 51 Galaxies from Parameter-Free Inverse Models of Their Measured Rotation Curves. Galaxies, 2020, vol. 8, iss. 1, pp. 19. DOI: 10.3390/galaxies8010019
- Di Teodoro E.M., Posti L., Fall S.M., Ogle P.M., et al. Dark Matter Halos and Scaling Relations of Extremely Massive Spiral Galaxies from Extended H I Rotation Curves. Monthly Notices of the Royal Astronomical Society, 2023, vol. 518, iss. 4, pp. 6340-6354. DOI: 10.1093/mnras/stac3424
- Fridman A.M., Morozov A.G., Nezlin M.V., Snezhkin E.N. Centrifugal Instability in Rotating Shallow Water and the Problem of the Spiral Structure in Galaxies. Physics Letters A, 1985, vol. 109, iss. 5, pp. 228-231. DOI: 10.1016/0375-9601(85)90309-3
- Fridman A.M., Morozov A.G., Nezlin M.V., Pasha I.I., Polyachenko V.L., Rylov A.Yu., Snezhkin E.N., Rorgashin Yu.N., Trubnikov A.S. The Hydrodynamical Conception of the Spiral Structure Generation in the Galaxies with a "Kink" on the Rotation Curve. Observational Evidence of Activity in Galaxies: Proceedings of the 121st Symposium of the International Astronomical Union, Held in Byurakan, Armenia. International Astronomical Union. Symposium no. 121, Kluwer Academic Publishers, Dordrecht, 1987, pp. 147-157.
- Fridman A.M. Prediction and Discovery of New Structures in Spiral Galaxies. Physics-Uspekhi, 2007, vol. 50, no. 2, pp. 115-139. DOI: 10.1070/PU2007v050n02ABEH006210
- Fridman A.M. Prediction and Discovery of Extremely Strong Hydrodynamic Instabilities Due to a Velocity Jump: Theory and Experiments. Physics-Uspekhi, 2008, vol. 51, iss. 3, pp. 213-229. DOI: 10.1070/PU2008v051n03ABEH006470
- Fridman A.M., Snezhkin E.N., Chernikov G.P., Rylov A.Yu., Titishov K.B., Torgashin Yu.M. Over-Reflection of Waves and Over-Reflection Instability of Flows Revealed in Experiments with Rotating Shallow Water. Physics Letters A, 2008, vol. 372, iss. 27-28, pp. 4822-4826. DOI: 10.1016/j.physleta.2008.04.063
- Fridman A.M., Bisikalo D.V. The Nature of Accretion Disks of Close Binary Stars: Overreflection Instability and Developed Turbulence. Physics-Uspekhi, 2008, vol. 51, iss. 6, pp. 551-576. DOI: 10.1070/PU2008v051n06ABEH006583
- Fridman A.M., Yanchenko S.G. The Possible Origin of the Mini-Spiral in the Nuclear Disk of the Galaxy as a Result of the Super-Reflection Instability. Astronomy Reports, 2009, vol. 53, iss. 11, pp. 969-975. DOI: 10.1134/S1063772909110018
- Fridman A.M., Khoperskov A.V. Physics of Galactic Disks. Cambridge, Cambridge International Science Publishing, 2013. 754 p.
- Griv E., Gedalin M. Turbulent Viscosity and Lifetime of Saturn's Rings. Planetary and Space Science, 2006, vol. 54, iss. 8, pp. 794-807.
- Khoperskov A.V., Khrapov S.S. Instability of High-Frequency Acoustic Waves in Accretion Disks with Turbulent Viscosity. Astronomy and Astrophysics, 1999, vol. 345, no. 5, pp. 307-314.
- Khoperskov A.V., Just A., Korchagin V.I., Jalali M.A. High Resolution Simulations of Unstable Modes in a Collisionless Disc. Astronomy and Astrophysics, 2007, vol. 473, no. 1, pp. 31-40. DOI: 10.1051/0004-6361:20066512
- Khoperskov S.A., Khoperskov A.V., Eremin M.A., Butenko M.A. Polygonal Structures in a Gaseous Disk: Numerical Simulations. Astronomy Letters, 2011, vol. 37, no. 8, pp. 563-575. DOI: 10.1134/S032001081108002X
- Khrapov S., Khoperskov A., Korchagin V. Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy. Galaxies, 2021, vol. 9, iss. 2, pp. 1-28. DOI: 10.3390/galaxies9020029
- Kolesnichenko A.V. Jeans Instability of a Protoplanetary Circular Disk Taking into Account the Magnetic Field and Radiation in Nonextensive Tsallis Kinetics. Solar System Research, 2021, vol. 55, iss. 2, pp. 132-149.
- Kondrat'ev B.P. Theory of Potential. New Methods and Problems with Solutions. Moscow, Mir Publ., 2007. 512 p.
- Kuz'min N.M., Mustsevoi V.V., Khrapov S.S. Numerical Modeling of the Evolution of Unstable Modes of Jets from Young Stellar Objects. Astronomy Reports, 2007, vol. 51, no. 12, pp. 985-993. DOI: 10.1134/S 1063772907120037
- Landau L.D., Lifshicz E.M. Hydrodynamics. Moscow, Nauka Publ., 1986. 736 p.
- Lang P., Meidt S., Rosolowsky E., Nofech J., et al. PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution. The Astrophysical Journal, 2020, vol. 897, iss. 2, article ID: 122. DOI: 10.3847/1538-4357/ab9953
- Marchuk A.A., Sotnikova N.Y. Two-Component Gravitational Instability in Spiral Galaxies. Monthly Notices of the Royal Astronomical Society, 2018, vol. 475, iss. 4, pp. 4891-4910. DOI: 10.1093/mnras/sty 100
- Morozov A.G. Generation of Spiral Structure in the Flat Galaxies with Double-Hunched Curve of Rotation. Astronomical Journal, 1979, vol. 56, no. 3, pp. 498-503.
- Morozov A.G., Khoperskov A.V. Physics of Disks. Volgograd, VolSU, 2005. 422 p.
- Mustsevoi V.V., Khoperskov A.V. Linear Stability Analysis of Double-Flow Accretion. Soviet Astronomy Letters, 1991, vol. 17, no. 2, pp. 119-122.
- Nezlin M.V., Snezhkin E.N. Rossby Vortices, Spiral Structures, Solitons: Astrophysics and Plasma Physics in Shallow Water Experiments. Springer, 1993. 227 p.
- Polyachenko E.V., Shukhman I.G. Effect of Inner Lindblad Resonance on Spiral Density Waves Propagation in Disc Galaxies: Reflection over Absorption. Monthly Notices of the Royal Astronomical Society, 2019, vol. 483, iss. 1, pp. 692-703. DOI: 10.1093/mnras/sty3005
- Sanders R.H., Noordermeer E. Confrontation of Modified Newtonian Dynamics with the Rotation Curves of Early-Type Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 2007, vol. 379, iss. 2, pp. 702-710. DOI: 10.1111/j.1365-2966.2007.11981.x
- Sellwood J.A., Masters K.L. Spirals in Galaxies. Annual Review of Astronomy and Astrophysics, 2022, vol. 60, article ID: 36. DOI: 10.1146/annurev-astro-052920-104505
- Shang H., Liu C.-F., Krasnopolsky R., Wang L.-Y. A Unified Model for Bipolar Outflows from Young Stars: Kinematic Signatures of Jets, Winds, and Their Magnetic Interplay with the Ambient Toroids. The Astrophysical Journal, 2023, vol. 944, iss. 2, article ID: 230. DOI: 10.3847/1538-4357/aca763
- Stepanyants Yu.A., Fabrikant A.L. Propagation of Waves in Hydrodynamic Shear Flows. Soviet Physics Uspekhi, 1989, vol. 32, pp. 783-805. DOI: 10.1070/PU1989v032n09ABEH002757
- Sofue Y. Rotation Curve Decomposition for Size-Mass Relations of Bulge, Disk, and Dark Halo Components in Spiral Galaxies. Publications of the Astronomical Society of Japan, 2016, vol. 68, iss. 1, article ID: 2. DOI: 10.1093/pasj/psvl03
- Swaters R.A., Sancisi R., Hulst J.M., Albada T.S. The Link Between the Baryonic Mass Distribution and the Rotation Curve Shape. Monthly Notices of the Royal Astronomical Society, 2012, vol. 425, iss. 3, pp. 2299-2308. DOI: 10.1111/j. 1365-2966.2012.21599.x
- Torgashin Yu., Omurkanov T. Large Scale Hydrodynamic Modes of Oscillations in Gaseous Disks of Flat Galaxies with a Kink on Rotation Curves. Open Astronomy, 2018, vol. 27, iss. 1, pp. 278-289. DOI: 10.1515/astro-2018-0031
- Toropina O.D., Bisnovatyi-Kogan G.S., Moiseenko S.G. Numerical MHD Simulation of Laboratory Jets in a Toroidal Magnetic Field. Astronomy Reports, 2023, vol. 67, no. 1, pp. 3-14.
- Zobnina D.I., Zasov A.V. Galaxies with Declining Rotation Curves. Astronomy Reports, 2020, vol. 64, no. 4, pp. 295-309. DOI: 10.1134/S1063772920050054
- Vukcevic M. The Effect of a Spiral Density Wave on the Galaxy's Rotation Curve, as Applied to the Andromeda Galaxy (M31). Universe, 2022, vol. 8, iss. 10, pp. 522. DOI: 10.3390/universe8100522
- Whitehead H.W., Matthews J.H. Studying the Link Between Radio Galaxies and AGN Fuelling with Relativistic Hydrodynamic Simulations of Flickering Jets. Monthly Notices of the Royal Astronomical Society, 2023, vol. 523, iss. 2, pp. 2478-2497. DOI: 10.1093/mnras/stadl582