Моделирование нагрузок, создаваемых мостовидным зубным протезом с опорой на имплантаты верхней челюсти

Автор: Федорова Н.В., Ларичкин А.Ю., Шевела А.А.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 2 (96) т.26, 2022 года.

Бесплатный доступ

Исследование направлено на оценку первичной стабильности несъёмного протеза на 8 имплантатах верхней адентичной челюсти. Рассмотрены случаи неприживления отдельных имплантатов и разная минерализация кости. Модель верхней челюсти была построена в соответствии с трёхмерным томографическим снимком. Моделирование случаев неприживления имплантатов проводилось при различных вариантах нагружения. Материал кости принят изотропным, при этом рассмотрена нормальная и критическая минерализация кости. Задачи решались с помощью метода конечных элементов. Для оценки первичной стабильности имплантатов использовался критерий Кулона - Мора. На основании критерия указаны критические сценарии протезирования в зависимости от конфигурации неприживления имплантатов и степени минерализации кости. При односторонней жевательной нагрузке наиболее опасные случаи неприживления имплантатов в дистальной области для любого типа минерализации. Рассмотренная конфигурация протеза на 8 имплантатах увеличивает риск повреждения кортикального слоя кости с возрастом, даже в случае приживления всех имплантатов.

Еще

Имплантат, стоматология, несъемный протез, верхняя челюсть, первичная стабильность, критерий прочности кулона - мора, метод конечных элементов

Короткий адрес: https://sciup.org/146282490

IDR: 146282490   |   DOI: 10.15593/RZhBiomeh/2022.2.05

Список литературы Моделирование нагрузок, создаваемых мостовидным зубным протезом с опорой на имплантаты верхней челюсти

  • Дашевский И.Н., Шушпанников П.С. Влияние характеристик резьбы на первичную стабильность дентальных имплантатов // Российский журнал биомеханики. - 2018. - Т. 22, № 3. - С. 361-377.
  • Коробейников С.Н. Нелинейное деформирование твердых тел // Новосибирск: Изд-во СО РАН, 2000. - 262 с.
  • Крупнин А.Е., Харах Я.Н., Киракосян Л.Г., Золотницкий И.В., Арутюнов С.Д. Численное исследование влияния дефектов зубного ряда малой протяженности на напряженно-деформированное состояние мостовидного протеза и периодонта // Российский журнал биомеханики. -2019. - Т. 23, № 1. - С. 58-68.
  • Маслов Л. Б. Математическая модель структурной перестройки костной ткани. // Российский журнал биомеханики. - 2013. - Т. 17, № 2. - С.36-63.
  • Рубникович С.П., Хомич И.С., Хомич А.Ф. Непосредственная имплантация с немедленной функциональной нагрузкой временными несъемными зубными протезами в концепции «All-on-6» при тотальной реабилитации стоматологического пациента // Стоматолог. Минск. - 2022. - № 2. - С. 31-38.
  • Рубникович С.П., Прялкин С.В., Денисова Ю.Л. Оценка прочностных характеристик винтовой фиксации ортопедических конструкций к мультиюнитам и дентальным имплантатам с коническим соединением в условиях эксперимента // Стоматология. Эстетика. Инновации. - 2022. - Т. 6, № 1. - С. 9-16.
  • Тропин В.А., Лохов В.А., Старкова А.В., Асташина Н.Б. Биомеханический анализ мостовидного протеза для замещения дефектов зубного ряда, осложненных вторичными деформациями // Российский журнал биомеханики. - 2015. - Т. 19, № 2. - С. 177-185.
  • Федорова Н.В. Исследование напряженно-деформированного состояния стоматологических имплантатов из керамики в зависимости от их формы и степени минерализации кости // Российский журнал биомеханики. - 2019. - Т. 23, № 3. - С. 451-459.
  • Чикова Т.Н., Киченко А.А., Тверье В.М., Няшин Ю.И. Моделирование перестройки трабекулярной костной ткани в ветви нижней челюсти человека // Российский журнал биомеханики. - 2018. - Т. 22, № 3. - С. 292-300.
  • Чикова Т.Н., Киченко А.А., Тверье В.М., Няшин Ю.И. Биомеханическое моделирование трабекулярной костной ткани в состоянии равновесия // Российский журнал биомеханики. - 2018. - Т. 22, № 3. - С. 282-291.
  • Шаранда В.А., Головко А.И. Определение выбора типа соединения в супраструктуре дентального имплантата в ортопедических конструкциях: современные концепции // Современная стоматология. - 2021. - № 1. - С. 19-23.
  • Aysa A., Mazen A., Oguz O., Sevcan K.Y. Biomechanical comparison of the All-on-4, M-4, and V-4 techniques in an atrophic maxilla: a 3D finite element analysis // Computers in Biology and Medicine. - 2020. - Vol. 123. - P. 103880.
  • Bevilacqua M., Tealdo T., Pera F. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths // The International Journal of Prosthodontics. - 2008. - Vol. 21, no. 6. - P. 539-542.
  • Bevill G., Farhamand F., Keaveny T.M. Heterogeneity of yield strain in low-density versus high-density human trabecular bone // Journal of Biomechanics. - 2009. - Vol. 42. -P. 2165-2170.
  • Capelli M., Zuffetti F., Del Fabbro M., Testori T. Immediate rehabilitation of the completely edentulous jaw with fixed prostheses supported by either upright or tilted implants: a multicenter clinical study // The International Journal of Oral & Maxillofacial Implants. - 2007. - Vol. 22. - P. 639-644.
  • Carter D. R., Hayes W. C. The compressive behavior of bone as a two-phase porous structure // The Journal of Bone and Joint Surgery. - 1977. - Vol. 59. - P. 954-962.
  • Choi A. H., Ben-Nissan B. Anatomy, modeling and biomaterial fabrication for dental and maxillofacial applications. - Bentham, 2018.
  • Cowin S.C. Bone mechanics handbook. - CRC Press, 2001. -981 p.
  • De Cos Juez F.J., Lasheras F.S., Garcia Nieto P.J., Alvarez-Arenal A. Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM // Applied Mathematics and Computation. - 2008. - Vol. 206. -P. 952-967.
  • Ebadian B., Mosharraf R., Khodaeian N. Effect of cantilever length on stress distribution around implants in mandibular overdentures supported by two and three implants // European Journal of Dentistry. - 2016. - Vol. 10, no.3. - P. 333-340.
  • Elsayyad A.A., Abbas N.A., AbdelNabi N.M., Osman R.B. Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: a 3D finite element analysis study // The Journal of Prosthetic Dentistry. - 2020. -Vol. 124, no. 68. - P. e1-e10.
  • Guan H., Staden R.C., Johnson N.W., Loo Y.-Ch. Dynamic modelling and simulation of dental implant insertion process - a finite element study // Finite Elements in Analysis and Design. -2011. - Vol. 47. - P. 886-897.
  • Guven S., Atalayb Y., Asutayb F., Ucanc M.C., Dundard S., Karamane T., Gunesc N. Comparison of the effects of different loading locations on stresses transferred to straight and angled implant supported zirconia frameworks: a finite element method study // Biotechnology & Biotechnological Equipment. -2015. - Vol. 29, no. 4. - P. 766-772.
  • Guven S., Beydemir K., Dundar S., Eratilla V. Evaluation of stress distributions in peri-implant and periodontal bone tissues in 3- and 5-unit tooth and implant-supported fixed zirconia restorations by finite elements analysis // European Journal of Dentistry. - 2015. - Vol. 9, no. 3. - P. 329-339.
  • Heinemanna F., Hasanb I., Bourauel Ch., Biffar R., Mundt T. Bone stability around dental implants: treatment related factors // Annals of Anatomy. - 2015. - Vol. 199. - P. 3-8.
  • Huang H.L., Hsu J.T., Fuh L. J., Tu M.G., Ko C.C., Shen Y.W. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study // Journal of Dentistry. - 2008. - Vol. 36. -P. 409-417.
  • Hussein L.A. A CT-based 3D-Finite element analysis of using zirconia prosthetic material as a full-arch hybrid fixed detachable mandibular prosthesis // The Journal of American Science. - 2015. - Vol. 11, no. 2. - P. 108-118.
  • Kul E., Korkmaz I. H. Effect of different design of abutment and implant on stress distribution in 2 implants and peripheral bone: A finite element analysis study // The Journal of Prosthetic Dentistry. - 2021. - Vol. 126. - P. 664.e1-9.
  • Lee H.J., Park S.Y., Noh G.W. Biomechanical analysis of 4 types of short dental implants in a resorbed mandible // The Journal of Prosthetic Dentistry. - 2019. - Vol. 121. -P. 659-670.
  • Lee H.Y., Yang S.W., Kang Y.J., Oh K.C., Kim J.H. Influence of shoulder coverage difference of abutment on stress distribution and screw stability in tissue-level internal connection implants: A finite element analysis and in vitro study // The Journal of Prosthetic Dentistry. - 2021. -Vol. 125. - P. 682.e1-10.
  • Lemos C.A.A., Verri F.R., Noritomi P.Y., Kemmoku D.T., Batista V.E.S., Cruz R.S. [et al.]. Effect of bone quality and bone loss level around internal and external connection implants: a finite element analysis study // The Journal of Prosthetic Dentistry. - 2021. - Vol. 125. - P. 137.e1-10.
  • MacLeod A.R., Pankaj P., Simpson A.H.R.W. Does screw-bone interface modelling matter in finite element analyses? // Journal of Biomechanics. - 2012. - Vol. 45. - P. 1712-1716.
  • Mathieu V., Vayron R., Richard G., Lambert G., Naili S., Meningaud J.-P., Haiat G. Biomechanical determinants of the stability of dental implants: Influence of the bone- implant interface properties // Journal of Biomechanics. - 2013. -Vol. 47, no. 1. - P. 3-13.
  • Martin R. B., Burr D. B., Sharkey N.A., Fyhrie D.P. Mechanical Properties of Bone. In: Martin R.B., Burr D.B., Sharkey N.A. (Eds.). Skeletal Tissue Mechanics. New York: Springer, 2015, 513 p.
  • Menini M., Pesce P., Bevilacqua M., Tealdo T., Barberis F. Effect of framework in an implant-supported full-arch fixed prosthesis: 3D finite element analysis // The International Journal of Prosthodontics. - 2015. - Vol. 28, no. 6. -P. 627-630.
  • Moreira de Melo E.J.Jr., Francischone C.E. Three-dimensional finite element analysis of two angled narrow-diameter implant designs for an all-on-4 prosthesis // The Journal of Prosthetic Dentistry. - 2020. - Vol. 124. - P. 477-484.
  • Nobakhti S., Shefelbine S. J. On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone // Current Osteoporosis Reports. - 2018. - Vol. 16. - P. 404-410.
  • Oyar P., Durkan R., Deste G. The effect of the design of a mandibular implant-supported zirconia prosthesis on stress distribution // The Journal of Prosthetic Dentistry. - 2021. -Vol.125. - P.502.e1-11.
  • Paras A., Ma S., Waddell J.N., Choi J.E. Real-time in vitro measurement of denture-mucosa pressure distribution in a typical edentulous patient with and without implants: Development of a methodology // Journal of the Mechanical Behavior of Biomedical Materials. - 2021. - Vol. 119. -P. 104531.
  • Patil P.G., Seow L.L., Uddanwadikar R., Ukey P.D. Biomechanical behavior of mandibular overdenture retained by two standard implants or 2 mini implants: a 3-dimensional finite element analysis // The Journal of Prosthetic Dentistry. - 2021. -Vol. 125. - P. 138.e1-8.
  • Richard G.B., Nisbett J.K. Shigley's mechanical engineering design. - 9th ed. - New York: The McGraw-Hill Companies, 2011. - 1084 p.
  • Sano M., Ikebe K., Yang T. C., Maeda Y. Biomechanical Rationale for Six Splinted Implants in Bilateral Canine, Premolar, and Molar Regions in an Edentulous Maxilla // Implant Dentistry. - 2012. - Vol. 21, no. 3. - P. 220-224.
  • Sato E., Shigemitsu R., Mito T., Yoda N., Rasmussen J., Sasaki K. The effects of bone remodeling on biomechanical behavior in a patient with an implant-supported overdenture // Computers in Biology and Medicine. - 2021. - Vol. 129. -P. 104173.
  • Schwitalla A.D., Abou-Emara M., Spintig T., Lackmann J., Müller W.D. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone // Journal of Biomechanics. - 2015. - Vol. 48, no. 1. - P. 1-7.
  • Silva G.C., Cornacchia T.M., De Magalhaes C.S., Bueno A.C., Moreira A.N. Biomechanical evaluation of screw- and cement-retained implant-supported prostheses: a nonlinear finite element analysis // The Journal of Prosthetic Dentistry. - 2014. -Vol. 112, no. 6. - P. 1479-1488.
  • Silva G.C., Mendonja J.A., Lopes L.R., Landre J. Stress patterns on implants in prostheses supported by four or six implants: a three dimensional finite element analysis // The International Journal of Oral & Maxillofacial Implants. - 2010. - Vol. 25, no. 2. - P. 239-246.
  • Silva L.S., Verri F.R., Lemos C.A.A., Martins C.M., Pellizzer E.P., de Souza Batista V.E. Biomechanical effect of an occlusal device for patients with an implant-supported fixed dental prosthesis under parafunctional loading: a 3D finite element analysis // The Journal of Prosthetic Dentistry. - 2021. -Vol. 126. - P. 223.e1-8.
  • Steiner J.A., Ferguson S.J., van Lenthe G.H. Computational analysis of primary implant stability in trabecular bone // Journal of Biomechanics. - 2015. - Vol. 48, no. 5. - P. 807-815.
  • Ting L., Zhixiang M., Ti Y., Chao W., Yuanding H. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: a three-dimensional finite element analysis // Computer Methods in Biomechanics and Biomedical Engineering. - 2019. - Vol. 22, no. 6. -P. 585-594.
  • Wall A., Board T. The compressive behavior of bone as a two-phase porous structure // Banaszkiewicz P.A., Kader D.F. (Eds.). Classic Papers in Orthopaedics. - London: Springer, 2014. - P. 457-460.
  • Wirth A.J., Müller R., van Lenthe G.H. Computational analyses of small endosseous implants in osteoporotic bone // European Cells & Materials. - 2010. - Vol. 20. - P. 58-71.
Еще
Статья научная