Моделирование программно-аппаратных систем и анализ их безопасности

Автор: Зеленов С.В., Зеленова С.А.

Журнал: Труды Института системного программирования РАН @trudy-isp-ran

Статья в выпуске: 5 т.29, 2017 года.

Бесплатный доступ

В данной статье демонстрируется целесообразность применения языка моделирования программно-аппаратных систем AADL и его расширения Error Model Annex для описания требований безопасности проектируемой системы. Наиболее важным аспектом здесь является возможность описания требований безопасности в терминах, используемых в теории безопасности, таких, как марковские цепи или логико-вероятностные функции, т.к. за годы развития теории было накоплено большое количество весьма полезных результатов. Различные подходы к оценке безопасности систем не конкурируют, но дополняют друг друга, так что наличие некоторой универсальности в описании требований безопасности является весьма ценным качеством.

Еще

Моделирование программно-аппаратных систем, безопасность, анализ дерева неисправностей, анализ видов и последствий отказов, марковский анализ

Короткий адрес: https://sciup.org/14916475

IDR: 14916475   |   DOI: 10.15514/ISPRAS-2017-29(5)-13

Список литературы Моделирование программно-аппаратных систем и анализ их безопасности

  • D. V. Buzdalov, S. V. Zelenov, E. V. Kornykhin, A. K. Petrenko, A. V. Strakh, A. A. Ugnenko, and A. V. Khoroshilov. Tools for system design of integrated modular avionics. Trudy ISP RAN/Proc. ISP RAS, volume 26, issue 1, pages 201-230, 2014. (Russian) DOI: 10.15514/ISPRAS-2014-26(1)-6
  • Gnedenko, B. V.; Beljaev, Ju. K.; Kovalenko, I. N. Mathematical problems in the theory of reliability. (Russian) 1966 Theory of Probability, Math. Statist., Theoret. Cybernet. 1964 (Russian) pp. 7-53 Akad. Nauk SSSR Inst. Naučn. Informacii, Moscow.
  • B.V. Gnedenko, Y.K. Belyayev, and A.D. Solovyev. Mathematical methods of reliability theory. Nauka, Moscow, 1965. (Russian)
  • V.K. Dedkov, A.S. Pronikov, A.N. Terpilovskij. Reliability of complex technical systems. Methods for determining and ensuring the reliability of industrial products. Academy of National Economy, Moscow, 1983. (Russian)
  • Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202 DOI: 10.15514/ISPRAS-2016-29(4)-12
  • Nikolskij V.I. Some accidents and disasters of domestic passenger ships. St. Petersburg State University of Water Communications, St.Petersburg, 2011. (Russian)
  • I.A. Ryabinin. The concept of the logic-probabilistic theory of safety. Devices and control system, 10:6-9, 1993. (Russian)
  • I.A. Ryabinin. Reliability and Safety of Structural Complex Systems. Politechnika, St.Petersburg, 2000. (Russian)
  • I.A. Ryabinin. Logic-probabilistic Analysis of Problems of Safety, Survivability and Safety. South Russian State University, Lik, Novocherkassk, 2009. (Russian)
  • I.A. Ryabinin and G.N. Cherkesov. The logic-probabilistic research methods of structure-complex systems reliability. Radio and communication, Moscow, 1981. (Russian)
  • Albert Nikolaevich Shiryaev. Probability. 2nd edition, 1995.
  • State Standard 27.302-2009. Dependability in technics. Fault tree analysis. Moscow, Standartinform Publ., 2011.
  • K.K. Aggarwal, J.S. Gupta, and K.B. Misra. A new method for system reliability evaluation. Microelectronics Reliability, 12(5):435-440, Nov 1973.
  • U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1998.
  • E.E. Barlow, F. Proschan, and L.C. Hunter. Mathematical Theory of Reliability. Wiley, New York-London-Sydney, 1965.
  • R.G. Bennetts. On the analysis of fault trees. IEEE Transactions on Reliability, R-24(3):175-185, Aug 1975.
  • J. Delange, P. Feiler, D. Gluch, J. Hudak. AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA. CMU/SEI-2014-TR-020, 2014.
  • Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 2012.
  • L. Fratta and U.G. Montanari. A boolean algebra method for computing the terminal reliability in a communication network. IEEE Transactions on Circuit Theory, 20(3):203-211, 1973.
  • J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover phoenix editions. Dover Publications, 2003.
  • E.J. Henley and H. Kumamoto. Reliability engineering and risk assessment. Prentice-Hall, 1981.
  • E.J. Henley and H. Kumamoto. Designing for reliability and safety control. Prentice-Hall International Series in Industrial and Systems Engineering. Prentice-Hall, 1985.
  • Alexey Khoroshilov, Dmitry Albitskiy, Igor Koverninskiy, Mikhail Olshanskiy, Alexander Petrenko, and Alexander Ugnenko. AADL-based toolset for IMA system design and integration. SAE Int. J. Aerosp., 5:294-299, Oct 2012.
  • M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time systems. In Proc. 23rd International Conference on Computer Aided Verification (CAV11), ser. LNCS, volume 6806, pages 585-591. Springer, 2011.
  • Nils J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71-88, February 1986.
  • I.A. Ryabinin. Reliability of Engineering Systems. Principles and Analysis. MIR, Moscow, 1976.
  • W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback. Fault Tree Handbook with Aerospace Applications. Handbook, National Aeronautics and Space Administration, Washington, DC, 2002.
  • ARINC 664 part 7, Avionics Full Duplex Switched Ethernet (AFDX) network, 2005.
  • MASIW: Modular Avionics System Integrator Workplace, 2016. https://forge.ispras.ru/projects/masiw-oss/.
  • OpenFTA, 2005. http://openfta.com/.
  • OSATE: Open Source AADL2 Tool Environment, 2016. http://osate.org/.
  • SAE International standard ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, 1996. http://standards.sae.org/arp4761/.
  • SAE International standard AS5506C, Architecture Analysis & Design Language (AADL), 2004. Rev. 2017, http://standards.sae.org/as5506c/.
  • SAE International standard AS5506/1A, Architecture Analysis & Design Language (AADL), Annex E: Error Model Annex, 2011. Rev. 2015, http://standards.sae.org/as5506/1a/.
Еще
Статья научная