Моделирование заполнения вязкой жидкостью области в капиллярном коаксиальном зазоре

Автор: Чехонин Константин Александрович, Власенко Виктор Дмитриевич

Журнал: Вычислительная механика сплошных сред @journal-icmm

Статья в выпуске: 3 т.12, 2019 года.

Бесплатный доступ

Предложена вариационная формулировка краевой задачи движения вязкой несжимаемой жидкости со свободной поверхностью и изменяющимися динамическими краевыми углами. Математическое представление процесса состоит из уравнений движения, непрерывности и естественных граничных условий на свободной поверхности. Традиционная особенность математической модели на линиях трехфазного контакта (ЛТФК) устраняется с помощью условия скольжения. Краевой угол на ЛТФК включается в вариационную формулировку задачи путем замены функции кривизны свободной границы оператором Лапласа-Бельтрами и использованием интегрирования по частям. Для описания динамических условий на ЛТФК, связывающих скорость движения этих линий и динамические краевые углы на твердых стенках цилиндров, применяется эмпирическое соотношение Джианга. Численное решение задачи основано на методе смешанных конечных элементов с аппроксимацией основных переменных задачи (вектора скорости и давления), удовлетворяющей условию их совместности (LBB-условию)...

Еще

Коаксиальный капилляр, свободная поверхность, динамический краевой угол, метод конечных элементов, линия трехфазного контакта

Короткий адрес: https://sciup.org/143168905

IDR: 143168905   |   DOI: 10.7242/1999-6691/2019.12.3.27

Список литературы Моделирование заполнения вязкой жидкостью области в капиллярном коаксиальном зазоре

  • Rose W. Fluid-fluid interfaces in steady motion // Nature. 1961. Vol. 191. P. 242-243.
  • Huh C., Scriven L.E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line // J. Colloid Interface Sci. 1971. Vol. 35. P. 85-101.
  • Dussan V. E.B., Davis S.H. On the motion of a fluid-fluid interface along a solid surface // J. Fluid Mech. 1974. Vol. 65. P. 71-95.
  • Пухначев В.В., Солонников В.А. К вопросу о динамическом краевом угле // ПММ. 1982. Т. 46, № 6. С. 961-971.
  • Shikhmurzaev Y.D. Moving contact lines in liquid/liquid/solid structure // J. Fluid Mech. 1997. Vol. 334. P. 211-249.
  • Mitsoulis E. Fountain flow revisited: The effect of various fluid mechanics parameters // AIChE J. 2010. Vol. 56. P. 1147-1162.
  • Борзенко Е.И., Рыльцев И.А., Шрагер Г.Р. Кинематика течения жидкости Балкли-Гершеля со свободной поверхностью при заполнении канала // Изв. РАН. МЖГ. 2017. № 5. С. 53-64.
  • Булгаков В.К., Чехонин К.А., Липанов А.М. Заполнение области между вертикальными коаксиальными цилиндрами аномально вязкой жидкостью в неизометрических условиях // ИФЖ. 1989. Т. 57, № 4. С. 577-583.
  • Чехонин К.А., Сухинин П.А. Движение нелинейно-вязкопластичной жидкости со свободной поверхностью при заполнении осесимметричного объема // Мат. моделирование. 2001. Т. 13, № 3. С. 89-102.
  • Chekhonin K.A., Sukhinin P.A. Numerical modeling of filling axially symmetric channel with non-linearly viscoelastic fluid taking into account π effect // ИФЖ. 1999. Т. 72, № 5. С. 881-885.
  • Wörner M. Numerical modeling of multiphase flow in microfluidics and micro process engineering: a review of methods and applications // Microfluid. Nanofluid. 2012. Vol. 12. P. 841-886.
  • Булгаков В.К., Чехонин К.А. Основы теории метода смешанных конечных элементов. Хабаровск: Изд-во Хабар. политех. ин-та, 1999. 283 c.
  • Fukai J., Shiiba Y., Yamamoto T., Miyatake O., Poulikakos D., Megaridis C.M., Zhao Z. Wetting effects on the spreadingof a liquid droplet colliding with a flat surface: experiment and modeling // Phys. Fluid. 1995. Vol. 7. P. 236-247.
  • Renardy M., Renardy Y., Li J. Numerical simulation of moving contact line problems using a volume-of-fluid method // J. Comput. Phys. 2001. Vol. 171. P. 243-263.
  • Ruschak K.J. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators // Int. J. Numer. Meth. Eng. 1980. Vol. 15. P. 639-648.
  • Spelt P.D.M. A level-set approach for simulations of flows with multiple moving contact lines with hysteresis // J. Comput. Phys. 2005. Vol. 207. P. 389-404.
  • Šikalo S., Wilhelm H.-D., Roisman I.V., Jakirlić S., Tropea C. Dynamic contact angle of spreading droplets: Experiments and simulations // Phys. Fluid. 2005. Vol. 17. 062103.
  • Dziuk G. An algorithm for evolutionary surfaces // Numer. Math. 1990. Vol. 58. P. 603-611.
  • Dziuk G., Elliott C.M. Finite elements on evolving surfaces // IMA J. Numer. Anal. 2007. Vol. 27. P. 262-292.
  • Gross S., Reusken A. Finite element discretization error analysis of a surface tension force in two-phase incompressible flows // SIAM J. Numer. Anal. 2007. Vol. 45. P. 1679-1700.
  • Saksono P.H., Perić D. On finite element modelling of surface tension: Variational formulations and applications - Part II: Dynamic problems // Comput. Mech. 2006. Vol. 38. P. 251-263.
  • Slikkerveer P.J., Van Lohuizen E.P., O'Brien S.B.G. An implicit surface tension algorithm for Picard solvers of surface-tension-dominated free and moving boundary problems // Int. J. Numer. Meth. Fluid. 1996. Vol. 22. P. 851-865.
  • Brooks A.N., Hughes T.J.R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations // Comput. Meth. Appl. Mech. Eng. 1982. Vol. 32. P. 199-259.
  • Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. Sci. and Stat. Comput. 1986. Vol. 7. P. 856-869.
  • Jiang T.-S., Oh S.-G., Slattery J.C. Correlation for dynamic contact angle // J. Colloid Interface Sci. 1979. Vol. 69. P. 74-77.
  • Georgiou G.C., Olson L.G., Schultz W.W., Sagan S. A singular finite element for Stokes flow: The stick-slip problem // Int. J. Numer. Meth. Fluid. 1989. Vol. 9. P. 1353-1367.
  • Центр коллективного пользования «Центр данных ДВО РАН». URL: http://lits.ccfebras.ru (дата обращения: 10.04.2019).
Еще
Статья научная