Modelling of the axisymmetric precision electrochemical shaping

Бесплатный доступ

The problem on modelling of a precision shaping and boundary conditions are formulated according to Faraday's law and with applying of stepwise dependence current efficiency on current density. The problem is reduced to the solution of a boundary problem for definition of two analytical functions of the complex variable. The first function is a conformal mapping of region of parametrical variable on the physical plane. In order to determine this function we use the Schwartz's integral and a spline interpolation. Unlike a plane problem for determination of potential and stream function of an axisymmetric field, the integration transformations of the second analytical function are used. The analytical function is defined in the form of a sum of two addends. The first addend takes into account the singularities of the function so that the second addend has no singularities. The second function is defined by the Schwartz's integral. Interpolation by spline functions is carried out, where the spline coefficients are derivatives of these functions by means of which the intensity vector components are calculated. We propose the method to solve the axisymmetric stationary problems, which differs from the known methods by the accuracy. By means of the method, we obtain the numerical results, describing the workpiece form. The error estimation of the obtained results is carried out. Also, we show qualitative coincidence with results of plane problem solution.

Еще

Electrochemical shaping, stepwise function, precision model, error estimation

Короткий адрес: https://sciup.org/147232982

IDR: 147232982   |   DOI: 10.14529/mmp200103

Список литературы Modelling of the axisymmetric precision electrochemical shaping

  • Zhitnikov, V.P. Comparison of Quasi-Stationary and Non-Stationary Solutions of Electrochemical Machining Problems Applying to Precision Cutting with Plate Electrode-Tool / V.P. Zhitnikov, N.M. Sherykhalina, S.S. Porechny // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2019. - T. 12, № 1. - С. 5-19.
  • Christiansen, S. Numerical Solutions for Two-Dimensional Annular Electrochemical Machining Problems / S. Christiansen, H. Rasmussen // Journal of the Institute of Mathematics and Its Applications. - 1976. - № 18. - P. 295-307.
  • Клоков, В.В. Влияние переменного выхода по току на стационарное анодное формообразование / В.В. Клоков // Труды семинара по краевым задачам. Т. 16. - Казань: Казанский государственный университет, 1979. - С. 94-102.
  • Газизов, Е.Р. Метод расчета анодного формообразования двугранным катодом для произвольной зависимости выхода по току / Е.Р. Газизов, Д.В. Маклаков // Теория и практика электрофизикохимических методов обработки деталей в авиастроении. - Казань: Казанский авиационный институт, 1994. - С. 32-35.
  • Datta, M. Fundamental aspects and applications of electrochemical microfabrication / M. Datta, D. Landolt // Electrochimica Acta. - 2000. - V. 45. - P. 2535-2558.
  • Hong Shik Shin. Analysis of the Side Gap Resulting from Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses / Hong Shik Shin, Bo Hyun Kim, Chong Nam Chu // Journal of Micromechanics and Microengineering. - 2008. - V. 18. - P. 1-6.
  • Shaohua Wang. Micro Wire Electrode Electrochemical Cutting with Low Frequency and Small Amplitude Tool Vibration / Shaohua Wang, Di Zhu, Yongbin Zeng, Yong Liu // International Journal of Advanced Manufacturing Technology. - 2011. - V. 53, № 5-8. - P. 535-544.
  • Ningsong Qu. Wire Electrochemical Machining with Axial Electrolyte Flushing for Titanium Alloy / Ningsong Qu, Xiaolong Fang, Weidong Li, Yongbin Zeng, Di Zhu // Chinese Journal of Aeronautics. - 2013. - V. 26, № 1. - P. 224-229.
  • Котляр, Л.М. Моделирование электрохимического формообразования с использованием криволинейного электрода при ступенчатой зависимости выхода по току от его плотности / Л.М. Котляр, Н.М. Миназетдинов // Прикладная механика и теоретическая физика. - 2016. - Т. 44, № 1. - С. 146-155.
  • Volgin, V.M. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode / V.M. Volgin, V.V. Lyubimov, I.V. Gnidina, A.D. Davydov, T.B. Kabanova // Procedia CIRP. - 2016. - V. 55. - P. 65-70.
  • Yuanlong Chen. Multiphysics Simulation of the Material Removal Process in Pulse Electrochemical Machining (PECM) / Yuanlong Chen, Ming Fang, Lijun Jiang // International Journal of Advanced Manufacturing Technology. - 2017. - V. 91, № 5-8. - P. 2455-2465.
  • Purcar, M. 3D Electrochemical Machining Computer Simulations / M. Purcar, L. Bortels, B. van den Bossche, J. Deconinck // Journal of Materials Processing Technology. - 2004. - V. 149, № 1-3. - P. 472-478.
  • Zhouzhi Gu. Cathode Design Investigation Based on Iterative Correction of Predicted Profile Errors in Electrochemical Machining of Compressor Blades / Zhouzhi Gu, Weiguo Zhu, Xiaohu Zheng, Xiaomin Bai // Chinese Journal of Aeronautics. - 2016. - V. 29, № 4. - P. 1111-1118.
  • Cheng Guo. Electrochemical Machining with Scanning Micro Electrochemical Flow Cell / Cheng Guo, Jun Qian, D. Reynaerts // Journal of Materials processing Technology. - 2017. - V. 24, № 7. - P. 171-183.
  • Лаврентьев, М.А. Методы теории функций комплексного переменного / М.А. Лаврентьев, Б.В. Шабат. - М.: Наука, 1987.
  • Henrici, P. Computational Complex Analysis / P. Henrici. - New-York: Wiley Classic Library, 1993.
  • Положий, Г.Н. Обобщение теории аналитических функций комплексного переменного / Г.Н. Положий. - Киев: Киевский университет, 1965.
  • Житников, В.П. Особенности установления предельных решений нестационарных осесимметричных задач Хеле - Шоу / В.П. Житников, О.Р. Зиннатуллина, С.С. Поречный, Н.М. Шерыхалина // Прикладная механика и теоретическая физика. - 2009. - Т. 50, № 4. - С. 87-99.
  • Zhitnikov, V.P. Modelling of Precision Steady-State and Non-Steady-State Electrochemical Machining by Wire Electrode-Tool / V.P. Zhitnikov, N.M. Sherykhalina, A.A. Zaripov // Journal of Materials Processing Technology. - 2016. - V. 235. - P. 49-54.
  • Zhitnikov, V.P. Problem of Reliability Justification of Computation Error Estimates / V.P. Zhitnikov, N.M. Sherykhalina, A.A. Sokolova // Mediterranean Journal of Social Sciences. - 2015. - V. 6, № 2. - P. 65-78.
Еще
Статья научная