Modelling the flow of character recognition results in video stream
Автор: Arlazarov V.V., Slavin O.A., Uskov A.V., Janiszewski I.M.
Рубрика: Математическое моделирование
Статья в выпуске: 2 т.11, 2018 года.
Бесплатный доступ
The paper considers problems of developing stochastic models consistent with results of character image recognition in video stream. A set of assumptions that define the models structure and properties is stated. A class of distributions, namely the Dirichlet distribution and its generalizations, that set a description of the model components is pointed out; and methods for statistical estimation of the distribution parameters are given. To rank the models, the Akaike information criterion is used. The proposed theoretical distributions are verified vs sample data.
Stochastic model, video stream, character recognition, dirichlet distribution, akaike criterion, goodness-of-fit anderson-darling tests
Короткий адрес: https://sciup.org/147232880
IDR: 147232880 | DOI: 10.14529/mmp180202
Список литературы Modelling the flow of character recognition results in video stream
- Hartl, A. Real-Time Detection and Recognition of Machine-Readable Zones with Mobile Devices/A. Hartl, C. Arth, D. Schmalstieg//Proceedings 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015). -2015. -P. 79-87.
- Tian, S. Unified Framework for Tracking Based Text Detection and Recognition from Web Videos/S. Tian, X.C. Yin, Y. Su, H.W. Hao//IEEE Transactions on Pattern Analysis and Machine Intelligence. -2018. -V. 40, 3. -P. 542-554.
- Арлазаров, В.В. Анализ особенностей использования стационарных и мобильных малоразмерных цифровых видеокамер для распознавания документов/В.В. Арлазаров, А.Е. Жуковский, В.Е. Кривцов, Д.П. Николаев, Д.В. Полевой//Информационные технологии и вычислительные системы. -2014. -№ 3. -С. 71-81.
- Bulatov, K. Smart IDReader: Document Recognition in Video Stream/K. Bulatov, V. Arlazarov, T. Chernov, O. Slavin, D. Nikolaev//The 14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017). -2017. -P. 39-44.
- Булатов, К. Методы интеграции результатов распознавания текстовых полей документов в видеопотоке мобильного устройства/К. Булатов, В. Кирсанов, В.В. Арлазаров и др.//Вестник РФФИ. -2016. -№ 4. -С. 109-115.
- Арлазаров, В.Л. Накопительные контексты в задаче распознавания/В.Л. Арлазаров, А.Е. Марченко, Д.Л. Шоломов//Труды ИСА РАН. -2014. -Т. 64, № 4. -С. 64-72.
- Булатов, К.Б. Выбор оптимальной стратегии комбинирования покадровых результатов распознавания символа в видеопотоке/К.Б. Булатов//Информационные технологии и вычислительные системы. -2017. -№ 3. -С. 45-55.
- Ricci, V. Fitting Distributions with R/V. Ricci. -2005. -24 p. -URL: https://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
- Ongaro, A. Generalization of the Dirichlet Distribution/A. Ongaro, S.A. Migliorati//Journal of Multivariate Analysis. -2013. -V. 114. -P. 412-426.
- Connor, R. Concepts of Independence for Proportions with a Generalisation of the Dirichlet Distribution/R. Connor, J.J. Mosimann//Journal of the American Statistical Association. -1969. -V. 64, № 325. -P. 194-206.
- Ng, K.W. Dirichlet and Related Distributions: Theory, Methods and Applications/K.W. Ng, G.-L. Tian, M.-L. Tang. -Chichester: Wiley, 2011.
- Elfadaly, F. Eliciting Dirichlet and Connor -Mosimann Prior Distributions for Multinomial Models/F. Elfadaly, P. Garthwaite//Test. -2013. -V. 22, № 4. -P. 628-646.
- Fang, K. Symmetric Multivariate and Related Distributions/K. Fang, S. Kotz, K.W. Ng. -N.Y.: Chapman and Hall, 1990.
- Ronning, G. Maximum Likelihood Estimation of Dirichlet Distributions/G. Ronning//Journal of Statistical Computation and Simulation. -1989. -V. 32, № 3. -P. 215-221.
- Robitzsch, A. Sirt: Supplementary Item Response Theory Models. R Package Version 2.6-9/A. Robitzsch. -URL: https://cran.r-project.org/web/packages/sirt/index.html
- Migliorati, S. A Structured Dirichlet Mixture Model for Compositional Data: Inferential And Applicative Issue/S. Migliorati, A. Ongaro, G.S. Monti//Statistics and Computing. -2017. -V. 27, № 4. -P. 963-983.
- Migliorati, S. FlexDir: Tools to Work with the Flexible Dirichlet Distribution. R Package Version 1.0/S. Migliorati, A.M. Di Brisco, M. Vestrucci. -URL: https://cran.r-project.org/web/packages/FlexDir/index.html
- Li, Y. Goodness-of-Fit Tests for Dirichlet Distributions with Applications: PhD Thesis/Y. Li. -Bowling Green State University, 2015.
- Stephens, M.A. Goodness of Fit, Anderson-Darling Test of/M.A. Stephens//Encyclopedia of Statistical Sciences. -2006. -4 p.
- Лемешко, Б.Ю. Статистический анализ данных, моделирование и исследование вероятностных закономерностей/Б.Ю. Лемешко, С.Б. Лемешко, С.Н. Постовалов, Е.В. Чимитова. -М.: НИЦ ИНФРА-М, 2011.
- Большев, Л.Н. Таблицы математической статистики/Л.Н. Большев, Н.В. Смирнов. -М.: Наука, 1983.