Models and methods of optimal control of software and technical configuration of heterogeneous distributed information processing systems

Бесплатный доступ

The article discusses formalization of the problem of heterogeneous distributed information processing systems (HDIPS) software and hardware configuration management. A formal description of possible optimality criteria for the HDIPS software and hardware configuration is given. The HDIPS model in terms of queuing theory is proposed. The problem of allocating the HDIPS computational resources is formulated as a transport problem according to time criterion with atomic needs. The algorithm for solving this problem is proposed and the boundaries of its applicability to the HDIPS are determined. To meet the selected optimality criterion, the analysis of the HDIPS software and hardware configuration applying its formal model, using the queuing theory methods is presented. HDIPS is presented as a queuing network, where each computing node and route control unit is a mass service system. The problem of computing resource allocation in HDIPS is presented as a transport problem according to the time criterion with atomic needs. The least time algorithm for indivisible needs takes into account the indivisibility condition.

Еще

Distributed information processing systems, transport problem, queuing systems, software and hardware configuration, management of software and hardware resources, management optimization

Короткий адрес: https://sciup.org/148321999

IDR: 148321999   |   DOI: 10.31772/2587-6066-2020-21-4-492-498

Список литературы Models and methods of optimal control of software and technical configuration of heterogeneous distributed information processing systems

  • Antamoshkin O. A., Kilochitskaya T. R., Ontuz-heva G. A., Stupina A. A., Tynchenko V. S. Multicrite-rion problem of allocation of resources in the heterogeneous distributed information processing systems. Journal of Physics: Conference Series. 2018, Vol. 1015, P. 32162. Doi: 10.1088/1742-6596/1015/3/032162.
  • Antamoshkin O. A. [Multi-agent automation system for monitoring, forecasting and control in emergency situations]. Mezhdunarodna nauchna shkola "Paradigma" [Paradigma International Scientific School]. Varna, 2015, P. 18-28 (In Russ.).
  • Glazunov V. V., Kurochkin M. A., Popov S. G. [Method for evaluating message transmission routes in telematic networks of vehicles based on the logical-probabilistic method]. Intellektual'nye tekhnologii na transporte, 2015. Vol 1 (In Russ.). Available at: https://cyberleninka.ru/article/n/metod-otsenki-marshru-tov-peredachi-soobscheniy-v-telematicheskih-setyah-transpotrnyh-sredstv-na-osnove-logiko-veroyatnostnogo-metoda (accessed: 25.10.2020).
  • Bigham J., Du L. Cooperative negotiation in a multi-agent system for real-time load balancing of a mobile cellular network ACM, 2003. P 568-575. Doi: 10.1145/860575.860666.
  • Kantamneni A., Brown L. E., Parker G., Weaver W. W. Survey of multi-agent systems for microgrid control. Engineering applications of artificial intelligence. 2015, Vol. 45, P. 192-203. Doi: 10.1016/j.engappai.2015.07.005.
  • Khritankov A. S. [Modeli i algoritmy raspre-deleniya nagruzki]. Informatsionnye tekhnologii i vychis-litel'nye sistemy. 2009, Vol. 2, P. 65-80 (In Russ.).
  • Skobelev P. O. [Intelligent resource management systems in real time: development principles, experience of industrial implementations and development prospects]. Prilozhenie k teoreticheskomu i prikladnomu nauchno-tekhnicheskomu zhurnalu "Informatsionnye tekhnologii". 2013, No. 1, P. 1-32 (In Russ.).
  • Dmitriev V. N., Sorokin A. A., Kuok Ch. T. [Improving the efficiency of traffic management in heterogeneous data transmission systems under conditions of uncertainty]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychis-litel'naya tekhnika i informatika. 2015, No. 3, P. 66-77 (In Russ.).
  • Krutolapov A. S. [Ensuring the quality of service in information exchange networks]. Vestnik Voronezhskogo instituta GPS MChS Rossii. 2013, No. 1, P. 18-22 (In Russ.).
  • Kammoun H. M., Kallel I., Casillas J., Abraham A., Alimi A. M. Adapt-Traf: An adaptive multiagent road traffic management system based on hybrid ant-hierarchical fuzzy model. Transportation Research Part C: Emerging Technologies. 2014, No. 42, P. 147-167. Doi.org: 10.1016/j.trc.2014.03.003.
  • GOST 15971-90. Sistemy obrabotki informatsii. Terminy i opredeleniya [State Standard 15971-90. Information processing systems. Terms and Definitions]. Moscow, Standartinform Publ., 1991, 12 p.
  • Ontuzheva G. A. [Methods for optimizing the distribution of resources of a geographically distributed multi-level computer network]. Mezhdunarodna nauchna
  • shkola "Paradigma" [Paradigma International Scientific School]. Varna, 2015, P. 185-190 (In Russ.).
  • Zhozhikashvili V. A., Vishnevskiy V. M. [Queuing networks: Theory and application to computer networks]. Seti massovogo obsluzhivaniya: Teoriya i prime-nenie k setyam EVM. Moscow, Radio i svyaz' Publ., 1988, 191 p.
  • Hammer P. L. Timeminimizing transportation problems. Naval Research Logistics Quarterly. 1969, No. 3 (16), P. 345-357. Doi:10.1002/nav.3800160307.
  • Ontuzheva G. A., Bruchanova E. R., Rudov I. N., Pikov N. O., Antamoshkin O. A. Simulation modelling of the heterogeneous distributed information processing systems. In IOP Conference Series: Materials Science and Engineering. 2018, Vol. 450, No. 5, P. 05. Doi: 10.1088/1757-899X/450/5/052018.
Еще
Статья научная