Modern strategies for the creation of polymer coatings. Part II

Автор: Vikhareva I.N., Antipin V.E., Enikeeva D.V., Kruchinina P.A.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Manufacturing technology for building materials and products

Статья в выпуске: 2 Vol.16, 2024 года.

Бесплатный доступ

Introduction. Coatings on hard materials are widely used in many industries. Coating technologies help prevent or reduce corrosion, contamination and biofouling, chemical and structural degradation, and wear and tear of external surfaces due to exposure to the elements and natural environments. The range of materials used for functional coatings is wide enough: from organic polymers to hybrid composites and inorganic nanoparticles, depending on the desired properties and functionality of the final product. Despite the excellent anti-corrosion characteristics of non-polymer coatings, their usage causes environmental damage. Organic coatings are among the most widely used. Such compositions are applied in liquid form; organic solvents are one of the major components. Environmental concerns have encouraged the development of alternative technologies. The main areas for development are availability of raw materials and the cost of environmentally friendly coatings. Results and discussion. The review substantiates the relevance of research on the development of multifunctional polymer-based coatings. The market for polymer coatings is presented. Methods of surface protection, types of coatings formed, their main components, features of the formation of coatings, the influence of various factors on the formation of polymer coatings, including methods of preparation and pre-treatment of the protected surface are presented. Methods for preventing corrosion are discussed in detail, as well as the primary lines in the development of anti-corrosion coatings based on various protective mechanisms. The characteristics of the main components of protective coatings are given. The issue of destruction of polymer coatings depending on the operating environment is considered in detail. The types of media, their influence and mechanisms of action on protected objects are considered. Factors and mechanisms of destruction of polymer coatings, methods for preventing degradation of coatings are listed. The latest technologies for the formation of protective polymer coatings are highlighted. Conclusion. Currently, coatings provide a wide range of quality indicators. An important characteristic of modern coatings is minimal negative impact on the environment, which requires an integrated approach to the design and production of coatings.

Еще

Adhesion, protection, corrosion, coating, polymer, solvent, thermosetting resin

Короткий адрес: https://sciup.org/142240852

IDR: 142240852   |   DOI: 10.15828/2075-8545-2024-16-2-109-124

Список литературы Modern strategies for the creation of polymer coatings. Part II

  • Zaripov I.I., Vikhareva I.N., Builova E.A., Berestova T.V., Mazitova A.K. Additives to reduce the flammability of polymers. Nanotechnologies in Construction. 2022; 14: 156-161. DOI: 10.15828/2075-8545-2022-14-2-156-161
  • Mazitova A.K., Aminova G.K., Zaripov Ilnaz I., Klyavlin M.S., Vikhareva I.N. Obtaining environmentally friendly cable PVC composites.The International Scientific and Practical Conference «Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East». 2021; 937: 022089. doi:10.1088/1755-1315/937/2/022089
  • Vikhareva I.N. Influence of dolomite on thermostability of PVC composition. ACTUAL QUESTIONS OF MODERN SCIENCE: Collection of Articles of the V International Scientific and Practical Conference. Penza: ICSSC “Science and Education”. 2023; 31-34.
  • Vikhareva I.N. Development of effective filler for polymeric materials. International Scientific and Practical Conference SUSTAINABLE DEVELOPMENT FORUM - 2023.Petrozavodsk: ICNP “NEW SCIENCE”.2023; 34-38.
  • Pat. 2788140 Russian Federation, MPK C08J 3/205, C08L 97/02. Polymer composition / Vihareva I.N., Mazitova A.K. No. 2022105578/04; avl. 01.03.2022; publ. 17.01.2023, Bulletin No. 2.
  • Pat. 2795810 Russian Federation, MPK C08L 23/02, C08L 27/06. Polymer composition of reduced flammability / Mazitova A.K., Vihareva I.N. No. 2022114652/04; avt. 30.05.2022; publ. 11.05.2023, Bulletin No. 14.
  • Pat. 2798938 Russian Federation, MPK C08L 23/04, C08L 23/10, C08L 27/06, C08L 33/12, C08L 13/02. Biodegradable polymer composition / Vihareva I.N., Mazitova A.K., Aminova G.K., Zaripov I.I., Ovod M.V. – № 2022106819; avv. 15.03.2022; publ. 29.06.2023, Bul No. 19.
  • Pat. 2798168 Russian Federation, MPK C09C 1/02, C08K 3/26, C09C 3/04, C09C 3/06, B01J 19/10. Method of obtaining carbonate-containing filler for composite materials and rubber mixtures / Vihareva I.N., Mazitova A.K., Zaripov I.I. – No. 2022117264; filed. 24.06.2022; publ. 16.06.2023, Bulletin No. 17.
  • Kouloumbi N., Ghivalos L.G., Pantazopoulou P. Effect of Quartz Filler on Epoxy Coatings Behavior. J. Mater. Eng. Perform. 2003; 12: 135.
  • Mazitova A.K., Aminova G.K., Vikhareva I.N. Designing of green plasticizers and assessment of the effectiveness of their use. Polymers. 2021; 13: 1761. DOI: 10.3390/polym13111761.
  • Vikhareva I.N., Aminova G.K., Mazitova A.K. Ecotoxicity of the adipate plasticizers: Influence of the structure of the alcohol substituent. Molecules. 2021: 26(16): 4833.
  • Vikhareva I.N., Aminova G.K., Abdrakhmanova L.K., Mazitova A.K. Biodegradation chemistry of new adipate plasticizers. Journal of Physics: Conference Series (JPCS). Proceedings of III International Scientific Conference on Applied Physics, Information Technologies and Engineering (APITECH-III 2021). 2021; 2094 (5): 052032
  • Vikhareva I.N., Aminova G.K., Mazitova A.K. Study of the rheological properties of PVC composites plasticized with butoxyethyl adipates. ChemEngineering. 2021; 56 85.
  • Mazitova A.K., Aminova G.K., Vihareva I.N. Modeling of kinetics of dibutoxyethyladipinates production. SOCAR Proceedings Special Issue. 2021; 2: 001-009.
  • Pat. 2776848 Russian Federation, MPK C08K 5/11, C08K 5/12, C07C 67/08. Complex ester compound, plasticizing composition on its basis, method of obtaining plasticizing composition and PVC composition containing complex ester compound or plasticizing composition / Mazitova A.K., Vihareva I.N., Aminova G.K., Akhmetov I.R., Salov A.S. No. 2020122041; filed. 29.06.2020; publ. 27.07.2022, Bulletin No. 21.
  • Almeida E., Santos D., Uruchurtu J. Corrosion Performance of Waterborne Coatings for Structural Steel. Prog. Org. Coat. 1999; 37: 131.
  • Galliano F., Landolt D. Evaluation of Corrosion Protection Properties of Additives for Waterbrone Epoxy Coatings on Steel. Prog. Org. Coat. 2002; 44: 217.
  • Topcuoglu O., Altinkaya S.A., Balkose D. Characterization of Waterborne Acrylic Based Paint Films and Measurement of their Water Vapor Permeability. Prog. Org. Coat. 2006; 56: 269.
  • Kiil S. Drying of Latex Films and Coatings: Reconsidering the Fundamental Mechanisms. Prog. Org. Coat. 2006; 57: 236.
  • Schwartz J. The Importance of Low Dynamic Surface Tension in Water-Borne Coatings. J. Coat. Technol. 1992; 64: 65.
  • Broek A.D. Environmental Friendly Paints. Their Technical (Im)possibilities. Prog. Org. Coat. 1993; 22: 55.
  • Gaschke M., Dreher B. Review of Solvent-Free Liquid Epoxy Coating Technology. J. Coat. Technol. 1976; 48: 46.
  • Daniels E.S., Klein A. Development of Cohesive Strength in Polymer Films from Latices: Effect of Polymer Chain Interdiffusion and Crosslinking. Prog. Org. Coat. 1991; 19: 359.
  • Oichi M., Takamiy K., Kiyohara O., Nakanishi T. Effect of the Addition of Aramid-Silicone Block Copolymer on Phase Structure and Toughness of Cured Epoxy Resins Modified with Silicone. Polymer. 1998; 39: 725.
  • Weiss K.D. Paint and Coatings: A Mature Industry in Transition. Prog. Polym. Sci. 1997; 22: 203.
  • Bhatnagar M.S. Epoxy-Resins from 1980 to Date. Polymer-Plast Technology Engineering. 1993; 32: 53.
  • Rouw A.C. Model Epoxy Powder Coatings and their Adhesion to Steel.Prog. Org. Coat. 1998; 34: 181.
  • Salem L.S. Epoxies for Steel. J. Protect. Coat. Linings. 1996; 77.
  • Vecera M., Mleziva J. The Influence of the Molecular Structure on the Chemical Resistivity of Solventless and High-Solid Epoxy Resins. Prog. Org. Coat. 1995; 26: 251.
  • Levita G., De Petris S., Marchetti A., Lazzeri A. Crosslink Density and Fracture Toughness of Epoxy Resins. J. Mater. Sci. 1991; 6: 2348.
  • Di Benedetto M. Multifunctional Epoxy-Resins come of Age. J. Coat. Technol. 1980; 52: 65.
  • Atta A.M., Mansour R., Abdou M.I., Sayed A.M. Epoxy Resins from Rosin Acids: Synthesis and Characterization. Polym. Adv. Technol. 2004; 15: 514.
  • Wegmann A. Novel Waterborne Epoxy Resin Emulsion. J. Coat. Technol. 1993; 65: 27.
  • Miskovic-Stankovic V.B., Zotovic J.B., Kacarevic-Popovic Z., Maksimovic M.D. Corrosion Behaviour of Epoxy Coatings Electrodeposited on Steel Electrochemically Modified by Zn-Ni Alloy. Electrochim. Acta. 1999; 44: 4269.
  • Miskovic-Stankovic V.B., Drazic D.M., Teodorovic M.J. Electrolyte Penetration Through Epoxy Coatings Electrodeposited on Steel. Corros. Sci. 1995; 37: 241.
  • Almeida E., Santos D., Fragata F., de la Fuente D., Morcillo M. Anticorrosive Painting for a Wide Spectrum of Marine Atmospheres: Environmental-Friendly versus Traditional Paint Systems. Prog. Org. Coat. 2006; 57: 11.
  • Carretti E., Dei L. Physicochemical Characterization of Acrylic Polymeric Resins Coating Porous Materials of Artistic Interest. Prog. Org. Coat. 2004; 49: 282.
  • Kjernsmo D., Kleven K., Scheie J. Corrosion Protection. Bording A/S, Copenhagen. 2003.
  • Ahmad S., Ashraf S.M., Hassan S.N., Hasnat A. Synthesis, Characterization, and Performance Evaluation of Hard, Anticorrosive Coating Materials Derived from Diglycidyl Ether of Bisphenol an Acrylates and Methacrylates. J. Appl. Polym. Sci. 2005; 95: 494.
  • Samuelsson J., Sundell P.E., Johansson M. Synthesis and Polymerization of a Radiation Curable Hyperbranched Resin Based on Epoxy Functional Fatty Acids. Prog. Org. Coat. 2004; 59: 193.
  • Lide D.R. CRC Handbook of Chmestry and Physics. Taylor and Francis, Boca Raton; 2007.
  • Munger C.G. The Chemistry of Zinc Silicate Coatings. Corrosion Prevention & Control. 1994; 41: 140.
  • Ahmad S., Gupta A.P., Sharmin E., Alam M., Pandey S.K. Synthesis, Characterization and Development of High-Performance Siloxane-Modified Epoxy Paints. Prog. Org. Coat. 2005; 54; 248.
  • Socha R.P., Pommier N., Fransaer J. Effect of Deposition Conditions on the Formation of Silica-Silicate Thin Films. Surf. Coat. Technol. 2007; 201: 5960.
  • Parashara G., Srivastavab D., Kumar P. Ethyl silicate binders for high performance coatings. Prog. Org. Coat. 2001; 42: 1.
  • Aigbodion A.I., Okieimen F.E., Obazee E.O., Bakare I.O. Utilization of Maleinized Rubber Seed Oil and Its Alkyd Resin as Binders in Water-Borne Coatings. Prog. Org. Coat. 2003; 46: 28.
  • Van Gorkum R., Bouwman E. The Oxidative Drying of Alkyd Paint Catalyzed by Metal Complexes .Coord. Chem. Rev. 2005; 249: 1709.
  • Wicks Z.W., Jones F.N., Pappas P.S., Wicks D.A. Organic Coatings: Science and Technology. Wiley; 1999.
  • Howarth G.A. Polyurethanes, Polyurethane Dispersions and Polyureas: Past, Present and Future. Surf. Coat. Int. 2003; 86: 111.
  • Chattopadhyay D.K., Raju K.V. Structural Engineering of Polyurethane Coatings for High Performance Applications. Prog. Polym. Sci. 2007; 32: 352.
  • Allen K.W., Hutchinson A.R., Pagliuca A. A Study of the Curing of Sealants used in Building Construction. Int. J. Adhes. 1994; 14: 117.
  • Coogan R.G. Post-Crosslinking of Water-Borne Urethanes. Prog. Org. Coat. 1997; 32: 51.
  • Hurst N.W., Jones T.A. A Review of Products Evolved from Heated Coal, Wood and PVC. Fire and Materials. 1985; 9: 1.
  • Lambourne R., Strivnes T.A. Paint and Surface Coatings – Theory and Practice. Woodhead, Cambridge; 1999.
  • Glass G.K., Reddy B., Buenfeld N.R. Corrosion Inhibition in Concente Arising from Its Acid Neutralisation Capacity. Corros. Sci. 2000; 42: 1587.
  • Skerry B.S., Chen C.T., Ray C.J. Pigment Volume Concentration and Its Effect on the Corrosion Resistance Properties of Organic Paint Films. J. Coat. Technol. 1992; 46: 77.
  • Yang L.H., Liu F.C., Han E.H. Effect of P/B on the Properties of Anticorrosive Coatings with Different Particle Size. Prog. Org. Coat. 2005; 53: 91.
  • Bierwagen G.P. Critical Pigment Volume Concentration (CPVC) as a Transition Point in the Properties of Coatings. J. Coat. Technol. 1992; 64: 71.
  • Bierwagen G.P., Rich D.C. The Critical Pigment Volume Concentration in Latex Coatings. Prog. Org. Coat. 1983; 11: 339.
  • Braunshausen R.W., Baltrus R.A., Debolt L. A Review of Methods of CPVC Determination. J. Coat. Technol. 1992; 64: 51.
  • del Rio G., Rudin A. Latex Particle Size and CPVC. Prog. Org. Coat. 1996; 28: 259.
  • Stieg F.B. Density Method for Determinating the CPVC of Flat Latex Paints. J. Coat. Technol. 1983; 55: 111.
  • Khorassani M., Pourmahdian S., Afshar-Teromi F., Nourhani A. Estimation of Critical Volume Concentration in Latex Paint Systems using Gas Permeation. Iranian Polymer Journal. 2005; 14: 1000.
  • Rodriguez M.T., Gracenea J.J., Kudama A.H., Suay J.J. The Influence of Pigment Volume Concentration (PVC) on the Properties of an Epoxy Coating Part I: Thermal and Mechanical Properties. Prog. Org. Coat. 2004; 50: 62.
  • Rodriguez M.T., Gracenea J.J., Saura J.J., Suay J.J. The Influence of Pigment Volume Concentration (PVC) on the Properties of an Epoxy Coating Part II. Anticorrosion and Economic Properties. Prog. Org. Coat. 2004; 50: 68.
  • Liu B., Li Y., Lin H., Cao C. Effect of PVC on the Diffusion Behaviour of Water through Alkyd Coatings. Corros. Sci. 2002; 44: 2657.
  • Hare C. Protective Coatings: Fundamentals of Chemistry and Composition. Technology Publishing, Pittsburg; 1994.
  • Wiktorek S. The Orientation of Micaceous Iron Oxide Particles in Organic Coatings Applied to Edges. J. Oil Color Chem. Assoc. 1986; 69:172.
  • Carter E. Synthetic Micaceous Iron Oxide: A New Anticorrosive Pigment. J. Oil and Color Chemists Association. 1990; 73: 7.
  • Guidice C., Benitez J.C. Optimising the Corrosion Protective Abilities of Lamellar Miceceous Iron Oxide Containing Primers. Anti-Corrosion Methods and Materials. 2000; 47: 226.
  • Hendry C.M. Designed Permeability of Micaceous Iron-Oxide Coatings. J. Coat. Technol. 1990; 62: 33.
  • Kalenda P., Kalendova A., Stengl V., Antos P., Subrt J., Kvaca Z., Bakardjieva S. Properties of Surface-Treated Mica in Anticorrosive Coatings. Prog. Org. Coat. 2004; 49: 137.
  • Goldschmidt A., Streitberger H. Basics of Coating Technology. Vincentz Network, Hannover; 2003.
  • Ahmed N.M., Selim M.M. Enhancement of Properties of Red Iron Oxide-Aluminum Oxide Solid Solutions Anticorrosive Pigments. Pigment & Resin Technology. 2005; 34: 256.
  • Knudsen O.O., Steinsmo U. Effect of Barrier Pigments on Cathodic Disbonding. Part 2: Mechanism of the Effect of Aluminum Pigments. J. Corros. Sci. Eng. 1999; 2.
  • Leidheiser H., Wang W., Ingetoft L. The Mechanism for the Cathodic Delamination of Organic Coatings from a Metal Surface. Prog. Org. Coat. 1983; 11: 19.
  • Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, London; 1966.
  • Kalendova A. Effects of Particle Sizes and Shapes of Zinc Metal on the Properties of Anticorrosive Coatings. Prog. Org. Coat. 2003; 46: 324.
  • Lohmander S. Influence of Shape and a Shape Factor of Pigment Particles on the Packing Ability in Coating Layers. Nordic Pulp and Paper Journal. 2000; 15: 300.
  • Giudice C.A., Benitez J.C., Pereyra A.M. Influence of Extender Type of Performance of Modified Lamellar Zinc Primers. JCT Research. 2004; 1: 291.
  • Kalendova A. Mechanism of the Action of Zinc-Powder in Anticorrosive Coatings. Anti-Corrosion Methods and Materials. 2002; 49: 173.
  • Kruba L., Stucker P., Schuster T. Less Metal, More Protection. European Coatings Journal. 2005; 10: 38.
  • Weinell C.E., Møller P. Accelerated Testing; Faster Development of Anti-Corrosive Coatings.14th Nordic Corrosion Congress. Copenhagen; 2007.
  • Marchebois H., Touzain S., Joiret S., Bernard J., Savall C. Zinc-rich Powder Coatings Corrosion in Sea Water: Influence of Conductive Pigments. Prog. Org. Coat. 2002; 45: 415.
  • Marchebois H., Savall C., Bernard J., Touzain S. Electrochemical Behavior of Zinc-Rich Powder Coatings in Artificial Sea Water. Electrochim. Acta. 2004; 49: 2945.
  • Hare C., Kunas J.S. Reduced PVC and the Design of Metal Primers. J. Coat. Technol. 2000; 72: 21.
  • Meroufel A., Touzain S. EIS Characterisation of New Zinc-Rich Powder Coatings. Prog. Org. Coat. 2007; 197.
  • Marchebois H., Keddam M., Savall C., Bernard J., Touzain S. Zinc-rich Powder Coatings Characterisation in Artificial Sea Water – EIS Analysis of the Galvanic Action. Electrochim. Acta. 2004; 49: 1719.
  • Treacy G.N., Wilcox G.D., Richardson M.O.W. Behaviour of Molybdate-Passivated Zinc Coated Steel Exposed to Corrosive Chloride Environments. J. Appl. Electrochem. 1999; 29: 647.
  • Morks M.F. Magnesium Phosphate Treatment for Steel. Mater. Lett. 2004; 3316.
  • Sugama T., Broyer R. Advanced Poly (Arcylic)Acid-Modified Zinc Phosphate Conversion Coatings: Use of Cobalt and Nickel Cations. Surf. Coat. Technol. 1992; 50: 89.
  • Barat J.B., Kacarevic-Popovic Z., Miskovic-Stankovic V.B., ′Maksimovic V.B. Corrosion Behaviour of Epoxy Coatings Electrodeposited on Galvanized Steel and Steel Modified by Zn-Ni Alloys. Prog. Org. Coat. 2000; 127.
  • Marder A.R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 2000; 45: 191.
  • Barat J.B., Miskovic-Stankovic V.B. Protective Properties of Epoxy Coatings Electrodeposited on Steel Electrochemically Modified by Zn-Ni Alloys. Prog. Org. Coat. 2004; 49: 183.
  • Boshkov N., Petrov K., Raichevski G. Corrosion Behaviour and Protective Ability of Multilayer Galvanic Coatings of Zn and Zn-Mn Alloys in Sulfate Containing Medium. Surf. Coat. Technol. 2006; 200: 5595.
  • Munz R., Wolf G.K., Guzman L., Adami M. Zinc/Manganese Multilayer Coatings for Corrosion Protection. Thin Solid Films. 2004; 459: 297.
  • Tsybul’skaya L.S., Gaevskaya T.V., Byk T.V., Klavsut G.N. Deposition, Structure and Properties of Electroplated Zinc Coating Alloyed with Cobalt. Russ. J. Appl. Chem. 2001; 74: 1678.
  • del Amo B., Veleva L., Di Sarli A.R., Elsner C.I. Performance of Coated Steel Systems Exposed to Different Media Part I. Painted Galvanized Steel. Prog. Org. Coat. 2004; 50: 179.
  • Kautek W., Sahre M., Paatch W. Transition-Metal Effects in the Corrosion Protection of Electroplated Zinc Alloy Coatings. Electrochim. 1994; 39: 1151.
  • Parsons P. Surface Coatings. Chapman & Hall, London; 1993.
  • Arya C., Vassie P.R.W. Influence of the Cathode-to-Anode Ratio and Separation Distance on Galvanic Corrosion Currents of Steel in Concrete Containing Chlorides. Cement and Concrete Research. 1995; 25: 989.
  • Mahdavian M., Attar M.M. Investegation on Zinc Phosphate Effectiveness at Different Pigment Volume Concentrations via Electrochemical Impedance Spectroscopy. Electrochim. 2005; 50: 4645.
  • del Amo B., Romagnoli R., Vetere V.F., Hernandez L.S. Study of the Anticorrosive Properties of Zinc Phosphate in Vinyl Paints. Prog. Org. Coat. 1998; 33: 28.
  • Deya M.C., Blustein G., Romagnoli R., del Amo B. The Influence of the Anion Type on the Anticorrosive Behaviour of Inorganic Phosphates. Surf. Coat. Technol. 2002; 150: 133.
  • Fragata F., Dopico J. Anticorrosive Behaviour of Zinc Phosphate in Alkyd and Epoxy Binders. J. Oil Color Chem. Assoc. 1991; 74: 92.
  • Leidheiser H. Mechanism of Corrosion Inhibition with Special Attention to Inhibitors in Organic Coatings. J. Coat. Technol. 1981; 53: 29.
  • Hare C. Inhibitive Primers to Passivate Steel. J. Protect. Coat. Linings. 1990; 7: 61.
  • Mahdavian M., Attar M.M. Evaluation of Zinc Phosphate and Zinc Chmomate Effectiveness via AC and DC Methods. Prog. Org. Coat. 2005; 53: 191.
  • Kalendova A., Brodinova J. Spinel and Rutile Pigments Containing Mg, Ca, Zn and other Cations for Anticorrosive Coatings. Anti-Corrosion Methods and Materials. 2003; 50: 352.
  • Vippola M., Ahmaniemi S., Keranen J., Vuoristo P., Lepisto T., Mantyla T., Olsson E. Aluminum Phosphate Sealed Alumina Coating: Characterization of Microstructure. Mater. Sci. 2002; 1.
  • Romagnoli R., del Amo B., Vetere V., Veleva L. High Performance Anticorrosive Epoxy Paints Pigmented with Zinc Molybdenum Phosphate. Surf. Coat. Int. 2000; 1: 27.
  • Kalenda P. Anticorrosion Pigments and Derived Coating Systems on Their Basis. Dyes and Pigments. 1993; 23: 215.
  • Kalendova A., Kalenda P., Vesely D. Comparison of the Efficiency of Inorganic Nonmetal Pigments with Zinc Powder in Anticorrosion Paints. Prog. Org. Coat. 2006; 57: 1.
  • Bierwagen G., Battocchi D., Simões A., Stamness A., Tallman D. The Use of Multiple Electrochemcial Techniques to Characterize Mg-Rich Primers for Al Alloys. Prog. Org. Coat. 2007; 59: 172.
  • Bastos A.C., Ferreira M.G.S., Simões A.M. Comparative Electrochemcial Studies of Zinc Chromate and Zinc Phosphate as Corrosion Inhibitors for Zinc. Prog. Org. Coat. 2005; 52: 339.
  • Zhao J., Frankel G., McCerry R.L. Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy. J. Electrochem. Soc. 1998; 2258.
  • Clark W.J., Ramsey J.D., McCerry R.L., Frankel G.S. A Galvanic Corrosion Approach to Investigating Chromate effects on Aluminum Alloy 2024-T3. J. Electrochem. Soc. 2002; 149: 179.
  • Xia L., McCerry R.L. Chemistry of a Chromate Conversion Coating on Aluminum Alloy AA2024-T3 Probed by Vibrational Spectroscopy. J. Electrochem. Soc. 1998; 145: 3083.
  • Kendig M., Davenport A.J., Isaacs H.S. The Mechanism of Corrosion Inhibition by Chromate Conversion Coatings from X-Ray Absorption near Edge Spectroscopy (XANES). Corros. Sci. 1993; 34: 41.
  • Isaacs H.S., Virtanen S., Ryan M.P., Schmuki P., Oblonsky L.J. Incorporation of Cr in the Passive Film on Fe from Chromate Solutions. Electrochim. 2002; 47: 3127.
  • Sunseri C., Piazza S., Di Quarto F. Photocurrent Spectroscopic Investigations of Passive Films on Chromium. J. Electrochem. Soc. 1990; 137: 2411.
  • Gabrielli C., Keddam M., Minouflet-Laurent F., Ogle K., Perrot H. Investigation of Zinc Chromatation Part II. Electrochemcial Impedance Techniques. Electrochim. Acta. 2003; 48: 1483.
  • Kalendova A., Vesely D., Kalenda P. A study of the Effects of Pigments and Fillers on the Properties of Anticorrosive Paints. Pigment & Resin Technology. 2006; 35: 83.
  • Kalendova A. Alkalising and Neutralising Effects of Anticorrosive Pigments containing Zn, Mg, Ca and Sr Cations. Prog. Org. Coat. 2000; 38: 199.
  • Kalendova A., Vesely D. Needle-Shaped Anticorrrosion Pigments Based on the Ferrites of Zinc, Calcium and Magnesium. Anti-Corrosion Methods and Materials. 2007; 54: 3.
Еще
Статья научная