Молекулярные аспекты патологической активации и дифференцировки вальвулярных интерстициальных клеток при развитии кальцинирующего аортального стеноза

Бесплатный доступ

Кальцинирующий аортальный стеноз (КАС) является самым распространенным пороком сердца. Патогенез этого заболевания сходен с атеросклеротическим процессом в сосудах. Известно, что главной движущей силой фиброзного ремоделирования и минерализации тканей аортального клапана (АК) являются активация и последующая дифференцировка клапанных интерстициальных клеток в остео- и миофибробластоподобные клетки. Тем не менее, стоящие за этими процессами молекулярные механизмы до сих пор слабо изучены. В настоящей статье собрана и проанализирована современная информация по данному вопросу, рассмотрены основные молекулярные пути, опосредующие патологическую дифференцировку клеток клапана, причины их активации.

Еще

Аортальный стеноз, клетки, сигнальные пути, дифференцировка

Короткий адрес: https://sciup.org/149125325

IDR: 149125325   |   DOI: 10.29001/2073-8552-2019-34-3-66-72

Список литературы Молекулярные аспекты патологической активации и дифференцировки вальвулярных интерстициальных клеток при развитии кальцинирующего аортального стеноза

  • Lindman B.R., Clavel M.A., Mathieu P., Iung B., Lancellotti P., Otto C.M. et al. Calcific aortic stenosis. Nat. Rev. Dis. Primers. 2016;3(2):16006. DOI: 10.1038/nrdp.2016.6
  • Osnabrugge R.L., Mylotte D., Head S.J., van Mieghem N.M., Nkomo V.T., LeReun C.M. et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013;62(11):1002-1012. DOI: 10.1016/j.jacc.2013.05.015
  • D'Arcy J.L., Prendergast B.D., Chambers J.B., Ray S.G., Bridgewater B. Valvular heart disease: the next cardiac epidemic. heart. 2011;97(2):91-93. DOI: 10.1136/hrt.2010.205096
  • Thaden J.J., Nkomo V.T., Enriquez-Sarano M. The global burden of aortic stenosis. Prog. Cardiovasc. Dis. 2014;56(6):565-571. 10.1016/j. pcad.2014.02.006. DOI: 10.1016/j.pcad.2014.02.006
  • Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017;38(36):2739-2791. DOI: 10.1093/eurheartj/ehx391
  • Marquis-Gravel G., Redfors B., Leon M.B., Généreux P. Medical treatment of aortic stenosis. Circulation. 2016;134(22):1766-1784.
  • DOI: 10.1161/CIRCULATIONAHA.116.023997
  • Nishimura R.A., Otto C.M., Bonow R.O. Carabello B.A., Erwin J.P., Fleisher L.A. et al. 2017 AHA/ACC focused update of the 2014 AHA/ ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation. 2017;135(25):e1159-e1195.
  • DOI: 10.1161/CIR.0000000000000503
  • Schoen F.J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation.2008;118(18):1864-1880.
  • DOI: 10.1161/CIRCULATIONAHA.108.805911
  • Rutkovskiy A., Malashicheva A., Sullivan G., Bogdanova M., Kostareva A., Stensløkken K.O. et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. J. Am. Heart Assoc. 2017;6(9):e006339.
  • DOI: 10.1161/JAHA.117.006339
  • Hortells L., Sur S., Hilaire C. Cell рhenotype transitions in сardiovascular сalcification. Front. Cardiovasc. Med. 2018;5:27.
  • DOI: 10.3389/fcvm.2018.00027
  • Mahler G.J., Farrar E.J., Butcher J.T. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2013;33(1):121-130.
  • DOI: 10.1161/ATVBAHA.112.300504
  • Witt W., Jannasch A., Burkhard D., Christ T., Ravens U., Brunssen C. et al. Sphingosine-1-phosphate induces contraction of valvular interstitial cells from porcine aortic valves. Cardiovasc. Res. 2012;93(3):490-497.
  • DOI: 10.1093/cvr/cvs002
  • Latif N., Sarathchandra P., Chester A.H., Yacoub M.H. Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur. Heart J. 2015;36(21):1335-1345.
  • DOI: 10.1093/eurheartj/eht547
  • Yip C.Y., Simmons C.A. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 2011;20(3):177-182.
  • DOI: 10.1016/j.carpath.2010.12.001
  • Aikawa E., Whittaker P., Farber M., Mendelson K., Padera R.F., Aikawa M. et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113:1344-1352.
  • DOI: 10.1161/CIRCULATIONAHA.105.591768
  • Mathieu P., Boulanger M.C. Basic mechanisms of calcific aortic valve disease. Can. J. Cardiol. 2014;30(9):982-993.
  • DOI: 10.1016/j.cjca.2014.03.029
  • Liu X., Xu Z. Osteogenesis in calcified aortic valve disease: from histopathological observation towards molecular understanding. Prog. Biophys. Mol. Biol. 2016;122(2):156-161.
  • DOI: 10.1016/j.pbiomolbio.2016.02.002
  • Monzack E.L., Masters K.S. Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. J. Heart Valve Dis. 2011;20(4):449-463.
  • Mathieu P., Boulanger M.C., Bouchareb R. Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert. Rev. Cardiovasc. Ther. 2014;12(7):851-862.
  • DOI: 10.1586/14779072.2014.923756
  • Bosse K., Hans C.P., Zhao N., Koenig S.N., Huang N., Guggilam A. et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J. Mol. Cell. Cardiol. 2013;60:27-35.
  • DOI: 10.1016/j.yjmcc.2013.04.001
  • Yip C.Y., Blaser M.C., Mirzaei Z., Zhong X., Simmons C.A. Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide. Arterioscler. Thromb. Vasc. Biol. 2011;31(8):1881-1889.
  • DOI: 10.1161/ATVBAHA.111.223974
  • Parisi V., Leosco D., Ferro G., Bevilacqua A., Pagano G., de Lucia C. et al. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutr. Metab. Cardiovasc. Dis. 2015;25(6):519-525.
  • DOI: 10.1016/j.numecd.2015.02.001
  • Chen J.H., Chen W.L., Sider K.L. Yip C.Y., Simmons C.A. β-catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 2011;31(3):590-597.
  • DOI: 10.1161/ATVBAHA.110.220061
  • Cadigan K.M. TCFs and Wnt/β-catenin signaling: more than one way to throw the switch. Curr. Top. Dev. Biol. 2012;98:1-34.
  • DOI: 10.1016/B978-0-12-386499-4.00001-X
  • Jian H., Shen X., Liu I., Semenov M., He X., Wang X.F. Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev. 2006;20(6):666-674.
  • DOI: 10.1101/gad.1388806
  • Zhang M., Wang M., Tan X., Li T.F., Zhang Y.E., Chen D. Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes. J. Biol. Chem. 2010;285(12):8703-8710.
  • DOI: 10.1074/jbc.M109.093526
  • Shafer S.L., Towler D.A. Transcriptional regulation of SM22α by Wnt3a: convergence with TGFβ(1)/Smad signaling at a novel regulatory element. J. Mol. Cell. Cardiol. 2009;46(5):621-635.
  • DOI: 10.1016/j.yjmcc.2009.01.005
  • Yip C.Y.Y., Chen J.H., Zhao R., Simmons C.A. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 2009;29(6):936-942.
  • DOI: 10.1161/ATVBAHA.108.182394
  • Wells R.G., Discher D.E. Matrix elasticity, cytoskeletal tension, and TGF-β: the insoluble and soluble meet. Sci. Signal. 2008;1(10):13.
  • DOI: 10.1126/stke.110pe13
  • Wang H., Haeger S.M., Kloxin A.M., Leinwand L.A., Anseth K.S. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One. 2012;7(7):e39969.
  • DOI: 10.1371/journal.pone.0039969
  • Wipff P.J., Rifkin D.B., Meister J.J., Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol.2007;179(6):1311-1323.
  • DOI: 10.1083/jcb.200704042
  • Liu W., Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL) / RANK / osteoprotegerin system in bone and other tissues (Review). Mol. Med. Rep. 2015;11(5):3212-3218.
  • DOI: 10.3892/mmr.2015.3152
  • Persy V., D'Haese P. Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med. 2009;15(9):405-416.
  • DOI: 10.1016/j.molmed.2009.07.001
  • Kaden J.J., Bickelhaupt S., Grobholz R., Haase K.K., Sarikoç A., Kiliç R. et al. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J. Mol. Cell. Cardiol. 2004;36(1):57-66.
  • Bucay N., Sarosi I., Dunstan C.R. Morony S., Tarpley J., Capparelli C. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes. Dev. 1998;12(9):1260-1268.
  • Weiss R.M., Lund D.D., Chu Y., Brooks R.M., Zimmerman K.A., Accaoui R.E. et al. Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One.2013;8(6):e65201.
  • DOI: 10.1371/journal.pone.0065201
  • Nishimura R., Hata K., Matsubara T., Wakabayashi M., Yoneda T. Regulation of bone and cartilage development by network between BMP signaling and transcription factors. J. Biochem. 2012;151(3):247-254.
  • DOI: 10.1093/jb/mvs004
  • Yang X., Meng X., Su X., Mauchley D.C., Ao L., Cleveland J.C. Jr. et al. Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J. Thorac. Cardiovasc. Surg.2009;138(4):1008-1015.
  • DOI: 10.1016/j.jtcvs.2009.06.024
  • Gomez-Stallons M.V., Wirrig-Schwendeman E.E., Hassel K.R., Conway S.J., Yutzey K.E. Bone morphogenetic protein signaling is required for aortic valve calcification. Arterioscler. Thromb. Vasc. Biol.2016;36(7):1398-1405.
  • DOI: 10.1161/ATVBAHA.116.307526
  • Deregowski V., Gazzerro E., Priest L., Rydziel S., Canalis E. Notch 1 over-expression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J. Biol. Chem. 2006;281(10):6203-6210.
  • DOI: 10.1074/jbc.M508370200
  • Nigam V., Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J. Mol. Cell. Cardiol. 2009;47(6):828-834.
  • DOI: 10.1016/j.yjmcc.2009.08.008
  • Nus M., MacGrogan D., Martínez-Poveda B., Benito Y., Casanova J.C. et al. Dietinduced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler. Thromb. Vasc. Biol.2011;31(7):1580-1588.
  • DOI: 10.1161/ATVBAHA.111.227561
  • Acharya A., Hans C.P., Koenig S.N., Nichols H.A., Galindo C.L., Garner H.R. et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11):e27743.
  • DOI: 10.1371/journal.pone.0027743
  • Ducharme V., Guauque-Olarte S., Gaudreault N. Pibarot P., Mathieu P., Bossé Y. NOTCH1 genetic variants in patients with tricuspid calcific aortic valve stenosis. J. Heart Valve Dis. 2013;22(2):142-149.
  • Garg V., Muth A.N., Ransom J.F., Schluterman M.K., Barnes R., King I.N. et al. Mutations in NOTCH1 cause aortic valve disease. Nature.2005;437(7056):270-274.
  • DOI: 10.1038/nature03940
  • Zeng Q., Song R., Ao L., Weyant M.J., Lee J., Xu D. et al. Notch1 pro-motes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-κB activation. Arterioscler. Thromb. Vasc. Biol. 2013;33(7):1580-1590.
  • DOI: 10.1161/ATV-BAHA.112.300912
  • Zeng Q., Jin C., Ao L., Cleveland J.C. Jr., Song R., Xu D. et al. Crosstalk between the Toll-like receptor 4 and Notch1 pathways augments the inflammatory response in the interstitial cells of stenotic human aortic valves. Circulation. 2012;126:S222-S230.
  • DOI: 10.1161/CIRCULATION-AHA.111.083675
  • Wang D., Zeng Q., Song R., Ao L., Fullerton D.A., Meng X. Ligation of ICAM-1 on human aortic valve interstitial cells induces the osteogenic response: a critical role of the Notch1-NF-κB pathway in BMP-2 expression. Biochim. Biophys. Acta. 2014;1843(11):2744-2753.
  • DOI: 10.1016/j.bbamcr.2014.07.017
Еще
Статья научная