Морфологическая и функциональная характеристика микроокружения рака молочной железы: обзор литературы

Автор: Мнихович М.В., Ахсанова П.А., Безуглова Т.В., Ерофеева Л.М., Ширипенко И.А., Сидорова О.А., Лозина М.В., Дронова М.В.

Журнал: Морфологические ведомости @morpholetter

Рубрика: Научные обзоры

Статья в выпуске: 1 т.32, 2024 года.

Бесплатный доступ

Рак молочной железы представляет собой гетерогенное злокачественное заболевание с широким разнообразием морфологии, молекулярных характеристик и клинической картины. Микроокружение опухоли играет важную роль в формировании поведенческого фенотипа опухоли и ее ответе на лечение, что делает его оценку критически важным в выборе терапевтической тактики. Однако практические аспекты использования данных о микроокружении рака молочной железы недостаточно исследованы. Цель исследования - систематизация морфологических и функциональных характеристик основных клеточных типов в опухолевом микроокружении рака молочной железы и анализ возможности практического использования этих данных. Материалом послужили базы научных данных, информационных и библиотечных ресурсов по соответствующим ключевым словам, в анализ взята литература с 2018 по 2023 годы. Показано, что компоненты опухолевой стромы, как клеточный компонент, так и внеклеточный матрикс, играют особую роль в канцерогенезе, причем эта роль не всегда однозначна. Анализ клеточного полиморфизма и типов опухолевого микроокружения не должен ограничивается только исследовательским интересом, но должен быть также неотъемлемой частью гистопатологической характеристики конкретного клинического случая для возможности его дальнейшего практического применения. Опухолевое микроокружение является не просто стромой, питающей опухолевую ткань, но и активным участником канцерогенеза. В состав опухолевого микроокружения рака молочной железы входят клеточный и внеклеточный компоненты, каждый из которых имеет свои функциональные и морфологические подтипы. Клетки опухолевого микроокружения обладают функциональным полиморфизмом, что создает трудности на пути к получению полноценного представления о канцерогенезе и взаимовлиянии в системе «опухолевая клетка - микроокружение». Анализ компонентов опухолевого микроокружения, выяснение его роли и сложных механизмов клеточного взаимодействия микроокружения с опухолевой тканью, в том числе с использованием технологий искусственного интеллекта, могут существенно продвинуть знания о механизмах развития рака молочной железы для разработки эффективных технологий его предупреждения и лечения.

Еще

Рак молочной железы, опухолевое микроокружение, клетки стромы опухоли, классификация опухолевого микроокружения

Короткий адрес: https://sciup.org/143183608

IDR: 143183608   |   DOI: 10.20340/mv-mn.2024.32(1).848

Список литературы Морфологическая и функциональная характеристика микроокружения рака молочной железы: обзор литературы

  • Jai Prakash. The Tumor Stroma: Biology and Therapeutics. 1 ed. Stanford: Jenny Stanford Publishing Pte. Ltd., 2022. - 446pp
  • Lepucki A, Orlinska K, Mielczarek-Palacz A et al. The Role of Extracellular Matrix Proteins in Breast Cancer. JCM. 2022;11(5):1250. https://doi.org/10.3390/jcm11051250
  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11 (1):5120. https://doi.org/10.1038/s41467-020-18794-x
  • Harbeck N, Penault-Llorca F, Cortes J et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. https://doi.org/10.1038/s41572-019-0111-2
  • Ferlay J, Colombet M, Soerjomataram I et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778-789. https://doi.org/10.1002/ijc.33588
  • Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20(8):417-436. https://doi.org/10.1038/s41568-020-0266-x
  • Wild CP, Weiderpass E, Stewart BW. World Cancer Report: Cancer Research for Cancer Prevention. 2020. - 594pp. URL: https://www.iccp-portal.org/system/files/resources/IARC%20World%20Cancer%20Report%202020.pdf. Date of access 20.05.2024
  • Watkins EJ. Overview of breast cancer. JAAPA. 2019;32(10):13-17. https://doi.org/10.1097/01.JAA.0000580524.95733.3d
  • Gaudet MM, Carter BD, Brinton LA et al. Pooled analysis of active cigarette smoking and invasive breast cancer risk in 14 cohort studies. Int J Epidemiol. 2017;46(3):881-893. DOI: 10.1093/ije/dyw288
  • Anderson KN, Schwab RB, Martinez ME. Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res Treat. 2014;144(1):1-10. https://doi.org/10.1007/s10549-014-2852-7
  • Loibl S, Poortmans P, Morrow M et al. Breast cancer. The Lancet.2021;397(10286):1750-1769. https://doi.org/10.1016/S0140-6736(20)32381-3
  • Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Annals of Oncology. 2015;26(7):1291-1299. https://doi.org/10.1093/annonc/mdv022
  • Kuchenbaecker KB, Hopper JL, Barnes DR et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017;317(23):2402. https://doi.org/ 10.1001/jama.2017.7112
  • Easton DF, Pharoah PDP, Antoniou AC, et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. N Engl J Med. 2015;372(23):2243-2257. https://doi.org/10.1056/NEJMsr1501341
  • Coughlin SS. Epidemiology of Breast Cancer in Women. Ed. by: A. Ahmad. Breast Cancer Metastasis and Drug Resistance. Cham: Springer International Publishing, 2019. - P. 9-29. https://doi.org/10.1007/978-3-030-20301-6_2
  • Aydiner A, Igci A, Soran A. Breast Cancer: a Guide to Clinical Practice. Cham, Switzerland: Springer, 2019. - 615pp
  • Tan PH, Ellis I, Allison K et al. Classification of Tumours Editorial Board. The 2019 World Health Organization classification of tumors of the breast. Histopathology. 2020;77(2):181-185. https://doi.org/10.1111/his.14D91
  • Beatson GT. On the Treatment of Inoperable Cases of Carcinoma of the Mamma: Suggestions for a New Method of Treatment, with Illustrative Cases. Trans Med Chir Soc Edinb. 1896;15:153-179
  • Chlebowski RT, Anderson GL. Menopausal hormone therapy and cancer: changing clinical observations of target site specificity. Steroids. 2014;90:53-59. https://doi.org/10.1016/j.steroids.2014.06.001
  • Chen WY. Exogenous and endogenous hormones and breast cancer. Best Pract Res Clin Endocrinol Metab. 2008;22(4):573-585. https://doi.org/10.1016/j.beem.2008.08.001
  • Yue W, Yager JD, Wang JP et al. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Ster-oids.2013;78(2):161-170. https://doi.org/10.1016/j.steroids.2012.11.001
  • Joshi H, Press MF. Molecular Oncology of Breast Cancer. В: The Breast. Elsevier. 2018;282-307.e5. https://doi.org/10.1016/B978-0-323-35955-9.00022-2
  • Creighton CJ, Kent Osborne C, van de Vijver MJ et al. Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat. 2009;114(2):287-299. https://doi.org/10.1007/s10549-008-0017-2
  • Gross GE, Clark GM, Chamness GC et al. Multiple progesterone receptor assays in human breast cancer. Cancer Res. 1984;44(2):836-840
  • Rugo HS, Rumble RB, Macrae E et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. J Clin Oncol. 2016;34(25):3069-3103
  • Slamon DJ, Clark GM, Wong SG et al. Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HE R-2/ neu Oncogene. Science. 1987;235(4785):177-182. https://doi.org/10.1126/science.3798106
  • Eroglu Z, Tagawa T, Somlo G. Human epidermal growth factor receptor family-targeted therapies in the treatment of HER2-overexpressing breast cancer. Oncologist. 2014;19(2):135-150. https://doi.org/10.1634/theoncologist.2013-0283
  • Puchinskaya MV. Epitelialno-mesenkhimal'ny perekhod v norme i patologii. Arkh patol. 2015;77(1): 75-83. In Russian
  • Yang J, Antin P, Berx G et al. On behalf of the EMT International Association (TEMTIA). Guidelines and definitions for research on epithelialmesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341-352. https://doi.org/10.1038/s41580-021-00428-9
  • Russo J. The Pathobiology of Breast Cancer. Cham: Springer International Publishing, 2016. - https://doi.org/10.1007/978-3-319-40815-6
  • Liu F, Gu LN, Shan BE et al. Biomarkers for EMT and MET in breast cancer: An update. Oncology Letters. 2016;12(6):4869-4876. https://doi.org/10.3892/ol.2016.5369
  • Yamashita N, Tokunaga E, Iimori M et al. Epithelial Paradox: Clinical Significance of Coexpression of E-cadherin and Vimentin With Regard to Invasion and Metastasis of Breast Cancer. Clin Breast Cancer. 2018;18(5):e1003-1009. https://doi.org/10.1016/j.clbc.2018.02.002
  • Jorgensen CLT, Forsare C, Bendahl PO et al. Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Res Treat. 2020;181(2):369-381. https://doi.org/10.10D7/s10549-D20-05627-0
  • Klenova N.A. Biokhimiya patologicheskikh sostoyany: uchebnoe posobie. Samara: Izd-vo «Samarsky universitet». 2006. - 216s. In Russian
  • Dzobo K, Senthebane DA, Dandara C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancer. 2023;15(2):376. https://doi.org/10.3390/cancers15020376
  • Hanley CJ, Mellone M, Ford K et al. Targeting the Myofibroblasts Cancer-Associated Fibroblast Phenotype Through Inhibition of NOX4. JNCI: Journal of the National Cancer Institute. 2018;110(1):109-120. https://doi.org/10.1093/jnci/djx121
  • Arina A, Idel C, Hyjek EM et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 2016;113(27):7551-7556. https://doi.org/10.1073/pnas.1600363113
  • Bochet L, Lehuede C, Dauvillier S et al. Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer. Cancer Research. 2013;73(18):5657-5668. https://doi.org/10.1158/0008-5472.CAN-13-0530
  • Bartoschek M, Oskolkov N, Bocci M et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9(1):5150.
  • Raz Y, Cohen N, Shani O et al. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. Journal of Experimental Medicine. 2012;215(12):3075-3093. https://doi.org/10.1084/jem.20180818
  • Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557-563. https://doi.org/10.1038/nature06188
  • Zeisberg EM, Potenta S, Xie L et al. Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts. Cancer Research. 2007;67(21):10123-10128. https://doi.org/10.1158/0008-5472.CAN-07-3127
  • Iwano M, Plieth D, Danoff TM et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341-350. https://doi. org/10.1172/JCI15518
  • Kojima Y, Acar A, Eaton EN et al. Autocrine TGF-ß and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 2010;107(46):20009-200014. https://doi.org/10.1073/pnas.1013805107
  • Arcucci A, Ruocco MR, Granato G et al. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts. BioMed Research International. 2016;2016:1-7. https://doi.org/10.1155/2016/4502846
  • De Wever O, Demetter P, Mareel M et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229-2238. https://doi.org/10.1002/ijc.23925
  • Zeltz C, Primac I, Erusappan P et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Seminars in Cancer Biology. 2020;62:166-181. https://doi.org/10.1016/j.semcancer.2019.08.004
  • Gaggioli C, Hooper S, Hidalgo-Carcedo C et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392-1400. https://doi.org/10.1038/ncb1658
  • Cui Q, Wang B, Li K et al. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by CollagenIV. Oncol Lett. 2018. https://doi.org/10.3892/ol.2018.9092
  • Chen W, Tang T, Eastham-Anderson J et al. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci USA. 2011;108(23):9589-9594. https://doi.org/10.1073/pnas.1017945108
  • Zhao H, Yang L, Baddour J et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife;5:e10250. https://doi.org/10.7554/eLife. 10250
  • Labernadie A, Kato T, Brugues A et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 2017;19(3):224-237. https://doi.org/10.1038/ncb3478
  • Roberts EW, Deonarine A, Jones JO et al. Depletion of stromal cells expressing fibroblast activation protein-a from skeletal muscle and bone marrow results in cachexia and anemia. Journal of Experimental Medicine. 2013;210(6):1137-11351. https://doi.org/ 10.1084/jem.20122344
  • Kraman M, Bambrough PJ, Arnold JN et al. Suppression of Antitumor Immunity by Stromal Cells Expressing Fibroblast Activation Protein-a. Science. 2010;330(6005):827-830. https://doi.org/ 10.1126/science.1195300
  • Neri S, Ishii G, Hashimoto H et al. Podoplanin-expressing cancer-associated fibroblasts lead and enhance the local invasion of cancer cells in lung adenocarcinoma: PDPN-CAFs lead and enhance cancer cell invasion. Int J Cancer. 2015;137(4):784-796. https://doi.org/ 10.1002/ijc.29464
  • Yamamoto Y, Kasashima H, Fukui Y et al. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Science. 2023;114(1):16-24. https://doi.org/10.1111/cas.15609
  • Miyai Y, Esaki N, Takahashi M et al. Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci. 2020;111 (4): 1047-1057. https://doi. org/10.1111/cas. 14346
  • Mizutani Y, Kobayashi H, Iida T et al. Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis. Cancer Research. 2019;79(20):5367-5381. https://doi.org/10.1158/0008-5472.CAN-19-0454
  • Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Seminars in Cancer Biology. 2014;25:61-68. https://doi.org/10.1016/j.semcancer.2014.02.006
  • Richardson AM, Havel LS, Koyen AE et al. Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clinical Cancer Research. 2018;24(2):420-432. https://doi.org/10.1158/1078-0432.CCR-17-1776
  • O'Connell JT, Sugimoto H, Cooke VG et al. VEGF-A and Tenascin-C produced by S100A4 + stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA. 2011;108(38):16002-16007. https://doi.org/10.1073/pnas.1109493108
  • Yang X, Lin Y, Shi Y et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Research. 2016;76(14):4124-4135. https://doi.org/10.1158/0008-5472.CAN-15-2973
  • Hu G, Wang S, Xu F et al. Tumor-Infiltrating Podoplanin+ Fibroblasts Predict Worse Outcome in Solid Tumors. Cell Physiol Biochem. 2018;51(3):1041-1050. https://doi.org/10.1159/000495484
  • Tamma R, Guidolin D, Annese T et al. Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma. Experimental Cell Research. 2017;359(1):179-184. https://doi.org/10.1016/j.yexcr.2017.07.033
  • Meyer N, Zenclussen AC. Mast cells-Good guys with a bad image? Am J Reprod Immunol. 2018;80(4):e13002. https://doi.org/10.1111/aji.13002
  • Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clinic Rev Allerg Immunol. 2020;58(3):313-325. https://doi.org/10.1007/s12016-019-08753-w
  • Hempel HA, Cuka NS, Kulac I et al. Low Intratumoral Mast Cells Are Associated with a Higher Risk of Prostate Cancer Recurrence: Mast Cells and Prostate Cancer Recurrence. Prostate. 2017;77(4):412-424. https://doi.org/10.1002/pros.23280
  • De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457-474. https://doi.org/10.1038/nrc.2017.51
  • Mnihovich MV, Ternov MM, Miglyas VG. Predrak i rak molochnoy zhelezy: svetovaya i elektronnomikroskopicheskaya otsenka ekstratsel-lyulyarnogo matriksa, angiogeneza i kletochnogo mikrookruzheniya. Patologiya. 2011;8(1):36-41. In Russian
  • Cheng S, Li Z, Gao R et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184(3):792-809.e23. https://doi.org/10.1016/j.cell.2021.01.010
  • Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19(6):402-421. https://doi.org/10.3389/fimmu.2023.1078705
  • Jayasingam SD, Citartan M, Thang TH et al. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 2020;9:1512. https://doi.org/10.3389/fonc.2019.01512
  • Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58. https://doi.org/10.1186/s13045-017-0430-2
  • Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. OTT. 2018;11:3817-2386. https://doi.org/10.2147/OTT.S168317
  • Erin N, Grahovac J, Brozovic A et al. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resistance Updates. 2020;53:100715. https://doi.org/10.1016/j.drup.2020.100715
  • Ireland L, Santos A, Campbell F et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Onco-gene. 2018;37(15):2022-2036. https://doi.org/10.1038/s41388-017-0115-x
  • Lee YS, Radford KJ. The role of dendritic cells in cancer. В: International Review of Cell and Molecular Biology. Amsterdam: Elsevier, 2019.- P. 123-178. https://doi.org/10.1016/bs.ircmb.2019.07.006
  • Wu, Saxena, Awaji, Singh. Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers. 2019;11(4):564. https://doi.org/10.3390/cancers11040564
  • Galdiero MR, Bonavita E, Barajon I et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218(11):1402-1410. https://doi.org/10.1016/j.imbio.2013.06.003
  • Jabtoúska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016;31(suppl1):177-183. https://doi.org/10.3109/14756366.2016.1161620
  • Ku HC, Cheng CF. Role of adipocyte browning in prostate and breast tumor microenvironment. Tzu Chi Med J. 2022;34(4):359. https://doi.org/10.4103/tcmj.tcmj_62_22
  • Camarda R, Williams J, Malkov S et al. Tumor cell-adipocyte gap junctions activate lipolysis in breast cancer. Cancer Biology. BioRXiv.2018. https://doi.org/10.1101/277939
  • Wu Q, Li B, Li Z et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95. https://doi.org/10.1186/s13045-019-0778-6
  • Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9(2):115. https://doi.org/10.1038/s41419-017-0061-0
  • López-Soto A, Gonzalez S, Smyth MJ et al. Control of Metastasis by NK Cells. Cancer Cell. 2017;32(2):135-154. https://doi.org/10.1016/j.ccell.2017.06.009
  • Rastogi I, Jeon D, Moseman JE et al. Role of B cells as antigen presenting cells. Front Immunol. 2022;13:954936. https://doi.org/10.3389/fimmu.2022.954936
  • Ghosh D, Jiang W, Mukhopadhyay D et al. New insights into B cells as antigen presenting cells. Current Opinion in Immunology. 2021;70:129-137. https://doi.org/10.1016/j.coi.2021.06.003
  • Kuroda H, Jamiyan T, Yamaguchi R et al. Tumor microenvironment in triple-negative breast cancer: the correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes. Clin Transl Oncol. 2021;23(12):2513-2525. https://doi.org/10.1007/s12094-021-02652-3
  • Catalán D, Mansilla MA, Ferrier A et al. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol. 2021;12:611795. https://doi. org/10.3389/fimmu.2021.611795
  • Dees S, Ganesan R, Singh S et al. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol. 2021;51(2):280-291. https://doi.org/10.1002/eji.202048992
  • Hsu YL, Yen MC, Chang WA et al. CXCL17-derived CD11b+Gr-1+ myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB. Breast Cancer Res. 2019;21(1):23. https://doi.org/10.1186/s13058-019-1114-3
  • Sasidharan Nair V, Saleh R, Toor SM et al. Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin Epigenet. 2020;12(1):13. https,.//doi.org/10.1186/s13148-020-0808-9
  • Bonowicz K, Mikotajczyk K, Faisal I et al. Mechanism of Extracellular Vesicle Secretion Associated with TGF-ß-Dependent Inflammatory Response in the Tumor Microenvironment. IJMS. 2022;23(23):15335. https://doi.org/10.3390/ijms232315335
  • Ansell SM, Vonderheide RH. Cellular Composition of the Tumor Microenvironment. American Society of Clinical Oncology Educational Book. 2013;(33):e91-7. https://org/doi/10.14694/EdBook_AM.2013.33.e91
  • Hu Y, Qi W, Sun L et al. Effect of TGF-ß1 on blood CD4+CD25high regulatory T cell proliferation and Foxp3 expression during non-small cell lung cancer blood metastasis. Exp Ther Med. 2018;16(2):1403-1410. https://doi.org/10.3892/etm.2018.6306
  • Draganov D, Han Z, Rana A et al. Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer. NPJ Breast Cancer. 2021;7(1):22. https://doi.org/10.1038/s41523-021-00229-5
  • Savas P, Salgado R, Denkert C et al. Clinical relevance of host immunity in breast cancer. from TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228-241. https://doi.org/10.1038/nrclinonc.2015.215
  • Ding JH, Xiao Y, Zhao S et al. Integrated analysis reveals the molecular features of fibrosis in triple-negative breast cancer. Molecular Therapy -Oncolytics. 2022;24:624-635. https://doi.org/10.1016/j.omto.2022.02.003
  • Salgado R, Denkert C, Demaria S et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of Oncology. 2015;26(2):259-271. https://doi.org/10.1093/annonc/mdu450
  • Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer - Updates on Therapeutic Implications and Pathologic Assessment. Cancers. 2021;13(16):4233. https://doi.org/10.3390/cancers13164233
  • Mir MA. Role of Tumor Microenvironment in Breast Cancer and Targeted Therapies. 1 ed. Amsterdam: Academic Press, 2022.- 275pp. https://doi. org/10.1016/C2022-0-00074-X
  • Beguinot M, Dauplat MM, Kwiatkowski F et al. Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ. BMC Cancer. 2018;18(1):129. https://doi.org/10.1186/s12885-018-4013-6
  • Bhatia JK, Chaudhary T, Boruah D et al. Study of angiogenesis in invasive breast carcinoma by morphometry and immunohistochemistry. Medical Journal Armed Forces India. 2022;78(3):345-354. https://doi.org/10.1016/j.mjafi.2021.10.013
  • Monneur A, Gonçalves A, Bertucci F. Expression de PD-L1 et inhibiteurs de la voie PD-1/PD-L1 dans le cancer du sein. Bulletin du Cancer. 2018;105(3):263-274. https://doi.org/10.1016/].bulcan.2017.11.012
  • Wang B, Liu J, Han Y et al. The Presence of Tertiary Lymphoid Structures Provides New Insight Into the Clinicopathological Features and Prognosis of Patients With Breast Cancer. Front Immunol. 2022;13:868155. https://doi.org/10.3389/fimmu.2022.868155
  • Mohammed ZMA, Going JJ, Edwards J et al. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2013;109(6):1676-1684. https://doi.org/10.1038/bjc.2013.493
  • Karancsi Z, Hagenaars SC, Németh K et al. Tumour-stroma ratio (TSR) in breast cancer: comparison of scoring core biopsies versus resection specimens. Virchows Arch. 2023. https://doi.org/10.1007/s00428-023-03555-0
  • Hagenaars SC, Vangangelt KMH, Van Pelt GW, et al. Standardization of the tumor-stroma ratio scoring method for breast cancer research. Breast Cancer Res Treat. 2022;193(3):545-553. https://doi.org/10.1007/s10549-022-06587-3
  • Mesker WE, Junggeburt JMC, Szuhai K et al. The Carcinoma-Stromal Ratio of Colon Carcinoma Is an Independent Factor for Survival Compared to Lymph Node Status and Tumor Stage. Analytical Cellular Pathology. 2007;29(5):387-398. https://doi.org/10.1155/2007/175276
  • Öztürk Ç, Okcu O, §en B et al. An easy and practical prognostic parameter: tumor-stroma ratio in Luminal, Her2, and triple-negative breast cancers. Rev Assoc Med Bras. 2022;68(2):227-233. https://doi.org/10.1590/1806-9282.20210979
  • Baxi V, Edwards R, Montalto M et al. Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology. 2022;35(1):23-32. https://doi.org/10.1038/s41379-021-00919-2
Еще
Статья обзорная