Морфологические изменения аллергенной пыльцы как биоиндикатор

Автор: Кобзарь В.Н.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Биологические науки

Статья в выпуске: 9 т.10, 2024 года.

Бесплатный доступ

С момента вскрытия пыльника и путешествия пыльцевых зерен в атмосфере они могут контактировать с твердыми и газообразными частицами, а экзина загрязняться разнообразными прилипшими частицами. Пыльца и твердые частицы являются одними из наиболее распространенных триггеров бронхиальной астмы. Повышенная аллергенность пыльцевых зерен будет определяться химическими реакциями между загрязнителями и пыльцой, а также неспецифической модуляцией механизмов синтеза многих белков, липидов и ферментов в ответ на стресс окружающей среды вследствие урбанизации и изменения климата. Указанное положение серьезно затрудняет идентификацию пыльцы до таксона при традиционном мониторинге и в дальнейшем усложняет подсчет и интерпретацию полученных результатов при исследовательском и автоматическом определении.

Еще

Нормальная пыльца растений, тератоморфная пыльца растений, споры грибов, субпыльцевые частицы, экзина, жизнеспособность, биомониторинг, твердые частицы, изменение климата, изменение сельскохозяйственного ландшафта, загрязнение окружающей среды

Еще

Короткий адрес: https://sciup.org/14131061

IDR: 14131061   |   DOI: 10.33619/2414-2948/106/03

Список литературы Морфологические изменения аллергенной пыльцы как биоиндикатор

  • Prodić I., Minić R., Stojadinović M. The influence of environmental pollution on the allergenic potential of grass pollen // Aerobiologia. 2024. P. 1-14. https://doi.org/10.1007/s10453-024-09829-7
  • Sabo N. Č., Popović A., Đorđević D. Air pollution by pollen grains of anemophilous species: Influence of chemical and meteorological parameters // Water, Air, & Soil Pollution. 2015. V. 226. P. 1-12. https://doi.org/10.1007/s11270-015-2549-5
  • Magyar D., Krasznai B., Tóth M. D. Microscopic fungi and other contaminants on airborne pollen grains of ragweed (Ambrosia artemisiifolia L.) // Aerobiologia. 2022. V. 38. №2. P. 217-231. https://doi.org/10.1007/s10453-022-09743-w
  • Oduber F., Calvo A. I., Blanco-Alegre C. D., Castro A., Vega-Maray A. M., Valencia- Barrera R. M., Fraile R. Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants // Agricultural and Forest Meteorology. 2019. V. 264. P. 16-26. https://doi.org/10.1016/j.agrformet.2018.09.023
  • Chehregani A., Majde A., Moin M., Gholami M., Shariatzadeh M. A., Nassiri H. Increasing allergy potency of Zinnia pollen grains in polluted areas // Ecotoxicology and environmental safety. 2004. V. 58. №2. P. 267-272. https://doi.org/10.1016/j.ecoenv.2003.12.004
  • Lu S., Ren J., Hao X., Liu D., Zhang R., Wu M., Wang Q. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles // Aerobiologia. 2014. V. 30. P. 281-291. https://doi.org/10.1007/s10453-014-9327-5
  • Mousavi F., Shahali Y., Pourpak Z., Majd A., Ghahremaninejad F. Year-to-year variation of the elemental and allergenic contents of Ailanthus altissima pollen grains: an allergomic study // Environmental monitoring and assessment. 2019. V. 191. P. 1-10. https://doi.org/10.1007/s10661-019-7458-4
  • Visez N., Ivanovsky A., Roose A., Gosselin S., Sénéchal H., Poncet P., Choël M. Atmospheric particulate matter adhesion onto pollen: a review // Aerobiologia. 2020. V. 36. P. 49-62. https://doi.org/10.1007/s10453-019-09616-9
  • Rezanejad F. A., Majd A., Shariatzadeh S. M. A., Moein M., Aminzadeh M., Mirzaeian M. Effect of air pollution on soluble proteins, structure and cellular material release in pollen of Lagerstroemia indica L.(Lytraceae) // Acta Biologica Cracoviensia Botanica. 2003. V. 45. №1. P. 129-132.
  • Azzazy M. Environmental impacts of industrial pollution on pollen morphology of Eucalyptus globulus Labill.(Myrtaceae) // Journal of Applied Biology & Biotechnology. 2016. V. 4. №05. P. 057-062. https://doi.org/10.7324/JABB.2016.40509
  • Galveias A., Costa A. R., Bortoli D., Alpizar-Jara R., Salgado R., Costa M. J., Antunes C. M. Cupressaceae pollen in the city of Évora, South of Portugal: Disruption of the pollen during air transport facilitates allergen exposure // Forests. 2021. V. 12. №1. P. 64. https://doi.org/10.3390/f12010064
  • Shahali Y., Pourpak Z., Moin M., Mari A., Majd A. Instability of the structure and allergenic protein content in Arizona cypress pollen // Allergy. 2009. V. 64. №12. P. 1773-1779. https://doi.org/10.1111/j.1398-9995.2009.02064.x
  • Motta A. C., Marliere M., Peltre G., Sterenberg P. A., Lacroix G. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen // International archives of allergy and immunology. 2006. V. 139. №4. P. 294-298. https://doi.org/10.1159/000091600
  • Smiljanic K., Prodic I., Apostolovic D., Cvetkovic A., Veljovic D., Mutic J., Velickovic T. C. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress // Environment International. 2019. V. 126. P. 644-658. https://doi.org/10.1016/j.envint.2019.03.001
  • Baldacci S., Maio S., Cerrai S., Sarno G., Baïz N., Simoni M., Study H. E. Allergy and asthma: effects of the exposure to particulate matter and biological allergens // Respiratory medicine. 2015. V. 109. №9. P. 1089-1104. https://doi.org/10.1016/j.rmed.2015.05.017
  • Zhou S., Wang X., Lu S., Yao C., Zhang L., Rao L., Wang Q. Characterization of allergenicity of Platanus pollen allergen a 3 (Pla a 3) after exposure to NO2 and O3 // Environmental Pollution. 2021. V. 278. P. 116913. https://doi.org/10.1016/j.envpol.2021.116913
  • Sénéchal H., Visez N., Charpin D., Shahali Y., Peltre G., Biolley J. P., Sutra J. P. A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity // The Scientific World Journal. 2015. V. 2015. №1. P. 940243. https://doi.org/10.1155/2015/940243
  • Kanter U., Heller W., Durner J., Winkler J. B., Engel M., Behrendt H., Ernst D. Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season // PLoS One. 2013. V. 8. №4. P. e61518. https://doi.org/10.1371/journal.pone.0061518
  • Depciuch J., Kasprzyk I., Roga E., Parlinska-Wojtan M. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy // Environmental Science and Pollution Research. 2016. V. 23. P. 23203-23214. https://doi.org/10.1007/s11356-016-7554-8
  • Pereira S., Fernández-González M., Guedes A., Abreu I., Ribeiro H. The strong and the stronger: The effects of increasing ozone and nitrogen dioxide concentrations in pollen of different forest species // Forests. 2021. V. 12. №1. P. 88. https://doi.org/10.3390/f12010088
  • Cuinica L. G., Abreu I., Gomes C. R., Esteves da Silva J. C. G. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2 // Grana. 2013. V. 52. №4. P. 299-304. https://doi.org/10.1080/00173134.2013.830145
  • Reinmuth-Selzle K., Kampf C. J., Lucas K., LangYona, N., Fröhlich-Nowoisky J., Shiraiwa M., Pöschl, U. Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants // Environmental science & technology. 2017. V. 51. №8. P. 4119-4141. https://doi.org/10.1021/acs.est.6b04908
  • Franze T., Weller M. G., Niessner R., Pöschl U. Protein nitration by polluted air // Environmental science & technology. 2005. V. 39. №6. P. 1673-1678. https://doi.org/10.1021/es0488737
  • Zhu C., Farah J., Choël M., Gosselin S., Baroudi M., Petitprez D., Visez N. Uptake of ozone and modification of lipids in Betula Pendula pollen // Environmental Pollution. 2018. V. 242. P. 880-886. https://doi.org/10.1016/j.envpol.2018.07.025
  • Pukacki P. M., Chalupka W. Environmental pollution changes in membrane lipids, antioxidants and vitality of Scots pine [Pinus sylvestris L.] pollen // Acta societatis botanicorum Poloniae. 2003. V. 72. №2.
  • Sousa R., Duque L., Duarte A. J., Gomes C. R., Ribeiro H., Cruz A., Abreu I. In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: effects on allergenicity and germination // Environmental science & technology. 2012. V. 46. №4. P. 2406-2412. https://doi.org/10.1021/es2034685
  • Sinha M., Singh R. P., Kushwaha G. S., Iqbal N., Singh A., Kaushik S., Singh T. P. Current overview of allergens of plant pathogenesis related protein families // The Scientific World Journal. 2014. V. 2014. №1. P. 543195. https://doi.org/10.1155/2014/543195
  • Ribeiro H., Costa C., Abreu I., da Silva J. C. E. Effect of O3 and NO2 atmospheric pollutants on Platanus x acerifolia pollen: Immunochemical and spectroscopic analysis // Science of the Total Environment. 2017. V. 599. P. 291-297. https://doi.org/10.1016/j.scitotenv.2017.04.206
  • Alscher R. G., Donahue J. L., Cramer C. L. Reactive oxygen species and antioxidants: relationships in green cells // Physiologia plantarum. 1997. V. 100. №2. P. 224-233. https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  • Ackaert C., Kofler S., Horejs-Hoeck J., Zulehner N., Asam C., von Grafenstein S., Duschl A. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101 // PloS one. 2014. V. 9. №8. P. e104520. https://doi.org/10.1371/journal.pone.0104520
  • Karle A. C., Oostingh G. J., Mutschlechner S., Ferreira F., Lackner P., Bohle B., Duschl A. Nitration of the pollen allergen bet v 1.0101 enhances the presentation of bet v 1-derived peptides by HLA-DR on human dendritic cells // PLoS One. 2012. V. 7. №2. P. e31483. https://doi.org/10.1371/journal.pone.0031483
  • Cuinica L. G., Abreu I., Gomes C. R., Esteves da Silva J. C. G. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2 // Grana. 2013. V. 52. №4. P. 299-304. https://doi.org/10.1080/00173134.2013.830145
  • Depciuch J., Kasprzyk I., Roga E., Parlinska-Wojtan M. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy // Environmental Science and Pollution Research. 2016. V. 23. P. 23203-23214. https://doi.org/10.1007/s11356-016-7554-8
  • Grewling L., Fratczak A., Kostecki L., Nowak M., Szymanska A., Bogawski P. Biological
  • and chemical air pollutants in an urban area of central Europe: Co-exposure assessment // Aerosol and Air Quality Research. 2019. V. 19. №7. P. 1526-1537. https://doi.org/10.4209/aaqr.2018.10.0365
  • Reinmuth-Selzle K., Kampf C. J., Lucas K., Lang-Yona N., Fröhlich-Nowoisky J., Shiraiwa M., Pöschl U. Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environ. Sci. Technol. 2017. 51. 4119–4141. https://doi.org/10.1021/acs.est.6b04908
  • Majd A., Chehregani A., Moin M., Gholami M., Kohno S., Nabe T., Shariatzade M. A. The effects of air pollution on structures, proteins and allergenicity of pollen grains // Aerobiologia. 2004. V. 20. P. 111-118. https://doi.org/10.1023/B:AERO.0000032950.12169.38
  • Plaza M. P., Alcázar P., Oteros J., Galán C. Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain) // Environmental Science and Pollution Research. 2020. V. 27. P. 45447-45459. https://doi.org/10.1007/s11356-020-10422-x
  • Elagöz V., Manning W. J. Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic differences, morphological characteristics, and the chamber environment // Environmental Pollution. 2005. V. 136. №3. P. 371-383. https://doi.org/10.1016/j.envpol.2005.01.021
  • Chichiriccò G., Picozzi P. Reversible inhibition of the pollen germination and the stigma penetration in Crocus vernus ssp. vernus (Iridaceae) following fumigations with NO2, CO, and O3 gases // Plant Biology. 2007. V. 9. №06. P. 730-735. https://doi.org/10.1055/s-2007-965246
  • Darbah J. N., Kubiske M. E., Nelson N., Oksanen E., Vaapavuori E., Karnosky D. F. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness // The Scientific World Journal. 2007. V. 7. №1. P. 240-246. https://doi.org/10.1100/tsw.2007.42
  • Wolters J. H. B., Martens M. J. M. Effects of air pollutants on pollen // The Botanical Review. 1987. V. 53. P. 372-414. https://doi.org/10.1007/BF02858322
  • Pasqualini S. et al. Ozone affects pollen viability and NAD (P) H oxidase release from Ambrosia artemisiifolia pollen //Environmental Pollution. – 2011. – Т. 159. – №. 10. – С. 2823-2830. https://doi.org/10.1016/j.envpol.2011.05.003
  • Leghari S. K., Saeed S., Asrar M., Ahmed A., Tariq I., Marri A. A., Shawani N. A. Response of sweet cherry (Prunus avium L.) pollen grains to vehicular exhaust pollution at Quetta, Balochistan, Pakistan // Applied Ecology & Environmental Research. 2018. V. 16. №4.
  • Ziemianin M., Waga J., Czarnobilska E., Myszkowska D. Changes in qualitative and quantitative traits of birch (Betula pendula) pollen allergenic proteins in relation to the pollution contamination // Environmental Science and Pollution Research. 2021. V. 28. №29. P. 39952-39965. https://doi.org/10.1007/s11356-021-13483-8
  • Ouyang Y., Xu Z., Fan E., Li Y., Zhang L. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen // International forum of allergy & rhinology. 2016. V. 6. №1. P. 95-100. https://doi.org/10.1002/alr.21632
  • Tashpulatov A. S., Clement P., Akimcheva S. A., Belogradova K. A., Barinova I., Rakhmawaty F. D., Touraev A. A model system to study the environment-dependent expression of the Bet v 1a gene encoding the major birch pollen allergen // International archives of allergy and immunology. 2004. V. 134. №1. P. 1-9. https://doi.org/10.1159/000077527
  • Overmyer K., Brosché M., Pellinen R., Kuittinen T., Tuominen H., Ahlfors R., Kangasjärvi J. Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant // Plant Physiology. 2005. V. 137. №3. P. 1092-1104. https://doi.org/10.1104/pp.104.055681
  • Bryce M., Drews O., Schenk M. F., Menzel A., Estrella N., Weichenmeier I., Traidl-Hoffmann C. Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes // International archives of allergy and immunology. 2009. V. 151. №1. P. 46-55. https://doi.org/10.1159/000232570
  • Chichiriccò G. Viability-germinability of Crocus (Iridaceae) pollen in relation to cyto-and ecophysiological factors // Flora. 2000. V. 195. №3. P. 193-199. https://doi.org/10.1016/S0367-2530(17)30973-8
  • Roshchina V. V., Mel'nikova E. V. Pollen chemosensitivity to ozone and peroxides // Russian Journal of Plant Physiology. 2001. V. 48. P. 74-83. https://doi.org/10.1023/A:1009054732411
  • Tiotiu A. I., Novakova P., Nedeva D., Chong-Neto H. J., Novakova S., Steiropoulos P., Kowal K. Impact of air pollution on asthma outcomes // International journal of environmental research and public health. 2020. V. 17. №17. P. 6212. https://doi.org/10.3390/ijerph17176212
  • Sedghy F., Varasteh A. R., Sankian M., Moghadam M. Interaction between air pollutants and pollen grains: the role on the rising trend in allergy // Reports of biochemistry & molecular biology. 2018. V. 6. №2. P. 219.
  • Guarnieri M., Balmes J. R. Outdoor air pollution and asthma // The Lancet. 2014. V. 383. №9928. P. 1581-1592. https://doi.org/10.1016/S0140-6736(14)60617-6
  • Okuyama Y., Matsumoto K., Okochi H., Igawa M. Adsorption of air pollutants on the grain surface of Japanese cedar pollen // Atmospheric Environment. 2007. V. 41. №2. P. 253-260. https://doi.org/10.1016/j.atmosenv.2006.08.009
  • Wang Q., Gong X., Nakamura S., Kurihara K., Suzuki M., Sakamoto K., Lu S. Air pollutant deposition effect and morphological change of Cryptomeria japonica pollen during its transport in urban and mountainous areas of Japan // Environmental Health Risk V, Biomedicine and Health. 2009. V. 14. P. 77-89.
  • Wang W. J., He H. S., Thompson III F. R., Spetich M. A., Fraser J. S. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change // Science of the Total Environment. 2018. V. 634. P. 1214-1221. https://doi.org/10.1016/j.scitotenv.2018.03.353
  • Lu S., Yao C., Zhou S., Lin Y., Zhang L., Zeng J., Wang Q. Studies on relationships between air pollutants and allergenicity of Humulus Scandens pollen collected from different areas of Shanghai // Journal of Environmental Sciences. 2020. V. 95. P. 43-48. https://doi.org/10.1016/j.jes.2020.03.037
  • D'Amato G., Murrieta-Aguttes M., D'Amato M., Ansotegui I. J. Pollen respiratory allergy: Is it really seasonal? // World Allergy Organization Journal. 2023. V. 16. №7. P. 100799. https://doi.org/10.1016/j.waojou.2023.100799
  • De Weger L. A., Verbeek C., Markey E., O’Connor D. J., Gosling W. D. Greater difference between airborne and flower pollen chemistry, than between pollen collected across a pollution gradient in the Netherlands // Science of The Total Environment. 2024. V. 934. P. 172963.
  • Romero-Guzmán E. T., Reyes-Gutiérrez L. R., Romero-Guzmán L., Hernández-Mendoza H., Uría-Gómez L. C., Gutiérrez-Reyes J. An overview of bioaerosols suspended in the atmosphere of Metropolitan Zone of Toluca Valley // Journal of the Mexican Chemical Society. 2021. V. 65. №2. P. 214-224.
Еще
Статья научная