Нахождение значений сумм функциональных рядов Релея - Шредингера возмущенных самосопряженных операторов

Бесплатный доступ

Авторами статьи был разработан неитерационный метод вычисления значений собственных функций возмущенных самосопряженных операторов, названный методом регуляризованных следов (РС). Он позволяет найти значения собственных функций возмущенных операторов, зная спектральные характеристики невозмущенного оператора и собственные числа возмущенного оператора. В отличие от известных методов нахождения собственных функций, метод РС не использует матрицы и значения собственных функций находятся по линейным формулам. Это значительно увеличивает его вычислительную эффективность по сравнению с классическими методами. Для применения метода РС на практике необходимо уметь суммировать функциональные ряды Релея - Шредингера возмущенных дискретных операторов. Ранее были получены формулы нахождения взвешенных поправок теории возмущений, что позволяло приближенно находить суммы функциональных рядов Релея - Шредингера, заменяя их частичными суммами, состоящими из этих поправок. В статье впервые получены формулы нахождения значений сумм функциональных рядов Релея - Шредингера возмущенных дискретных операторов в узловых точках. Проведены вычислительные эксперименты по нахождению значений собственных функций возмущенного одномерного оператора Лапласа. Результаты эксперимента показали высокую вычислительную эффективность разработанного метода суммирования рядов Релея - Шредингера.

Еще

Возмущенные операторы, собственные числа, собственные функции, кратный спектр, суммы функциональнных рядов релея - шредингера, взвешенные поправки теории возмущений

Короткий адрес: https://sciup.org/147159378

IDR: 147159378   |   DOI: 10.14529/mmp160312

Список литературы Нахождение значений сумм функциональных рядов Релея - Шредингера возмущенных самосопряженных операторов

  • Садовничий, В.А. Замечание об одном новом методе вычислений собственных значений и собственных функций дискретных операторов/В.А. Садовничий, В.В. Дубровский//Тр. семинара им. И.Г. Петровского. -1994. -Вып. 17. -С. 244-248.
  • Дубровский, В.В. Оценка разности спектральных функций самосопряженных операторов/В.В. Дубровский, А.И. Седов//Электромагнитные волны и электронные системы. -2000. -Т. 5, № 5. -С. 10-13.
  • Дубровский, В.В. Теория возмущений и следы операторов: дисс. докт. физ.-мат. наук/В.В. Дубровский. -Москва: МГУ, 1992.
  • Кадченко, С.И. Численные методы регуляризованных следов спектрального анализа: монография/С.И. Кадченко, С.Н. Какушкин. -Челябинск: Издат. центр ЮУрГУ, 2015. -206 с.
Краткое сообщение