Накопление температурных напряжений в оболочках из полимерных композиционных материалов при циклическом температурном воздействии

Автор: Задорин А.А., Мишнев М.В., Королев А.С.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является полимерный композит на основе термореактивного эпоксидного связующего и стеклоткани марки EZ-200. Его поведение в условиях эксплуатации промышленных дымовых труб, включающих высокие температуры, длительную эксплуатацию, циклические механические и температурные воздействия, а также длительное термическое старение, еще предстоит определить. Вязкоупругость полимерной матрицы приводит к нескольким возможным эффектам. Одним из них является накопление температурных напряжений за счет нестационарных температурных воздействий. Целью данной работы является оценка возможности такого эффекта и его оценка. Для этого потребовалось проведение циклических нагревательных испытаний и расчетов оболочки КЭ.

Еще

Полимеры, композиты, тепловые нагрузки, вязкоупругость, накопление напряжений, промышленные дымоходы, газоходы

Короткий адрес: https://sciup.org/143182713

IDR: 143182713   |   DOI: 10.4123/CUBS.109.20

Список литературы Накопление температурных напряжений в оболочках из полимерных композиционных материалов при циклическом температурном воздействии

  • Astashkin, V.M. and Mishnev, M. V. (2016) On the Development of the Manufacturing Technology of Fiberglass Cylindrical Shells of Gas Exhaust Trunks by Buildup Winding. Procedia Engineering. https://doi.org/10.1016/j.proeng.2016.07.144.
  • El Damatty, A.A., Awad, A.S. and Vickery, B.J. (2000) Thermal Analysis of FRP Chimneys Using Consistent Laminated Shell Element. Thin-Walled Structures, 37. https://doi.org/10.1016/S0263-8231(99)00041-5.
  • Kumar, K., Dixit, S., Prakash, A., Vatin, N.I., Ul Haq, M.Z., Tummala, S.K., Bobba, P.B., Sobti, R. and Kalpana, K. (2023) Understanding Composites and Intermetallic: Microstructure, Properties, and Applications. E3S Web of Conferences, EDP Sciences. https://doi.org/10.1051/e3sconf/202343001196.
  • Idrees, M., Akbar, A., Saeed, F., Saleem, H., Hussian, T. and Vatin, N.I. (2022) Improvement in Durability and Mechanical Performance of Concrete Exposed to Aggressive Environments by Using Polymer. Materials, 15. https://doi.org/10.3390/ma15113751.
  • Plecnik, J.M., Whitman, W.E., Baker, T.E. and Pham, M. (1984) Design Concepts for the Tallest Free‐standing Fiberglass Stack. Polymer Composites, 5. https://doi.org/10.1002/pc.750050305.
  • Tefera, G., Adali, S. and Bright, G. (2022) Flexural and Viscoelastic Properties of FRP Composite Laminates under Higher Temperatures: Experiments and Model Assessment. Polymers, 14. https://doi.org/10.3390/polym14112296.
  • Manalo, A., Surendar, S., van Erp, G. and Benmokrane, B. (2016) Flexural Behavior of an FRP Sandwich System with Glass-Fiber Skins and a Phenolic Core at Elevated in-Service Temperature. Composite Structures, 152. https://doi.org/10.1016/j.compstruct.2016.05.028.
  • Mishnev, M. V, Korolev, A.S., Vatin, N.I., Zadorin, A.A. and Khoroshilov, N.A. (2020) Based on the Hybrid Hot-Curing Epoxy Binder Fiberglass and evaluation of Its Effectiveness in Load-Bearing Chimneys. Construction of Unique Buildings and Structures, 93, 9302. https://doi.org/10.18720/CUBS.93.2.
  • Korolev, A., Mishnev, M., Ulrikh, D. and Zadorin, A. (2023) Relaxation Model of the Relations between the Elastic Modulus and Thermal Expansivity of Thermosetting Polymers and FRPs. Polymers, 15. https://doi.org/10.3390/polym15030699.
  • Mishnev, M., Korolev, A., Ulrikh, D., Gorechneva, A., Sadretdinov, D. and Grinkevich, D. (2023) Solid Particle Erosion of Filled and Unfilled Epoxy Resin at Room and Elevated Temperatures. Polymers, 15. https://doi.org/10.3390/polym15010001.
  • A, Z.A., A, K.N., Vladimirovich, M., Aleksandrovich, A. and Andreevich, N. Prediction of Elastic Characteristics of Fiberglass in Bending: Multi-Scale Finite Element Modeling and Experiment. https://doi.org/10.4123/CUBS.98.1.
  • Korolev, A., Mishnev, M., Zherebtsov, D., Vatin, N.I. and Karelina, M. (2021) Polymers under Load and Heating Deformability: Modelling and Predicting. Polymers, 13. https://doi.org/10.3390/polym13030428.
  • García-Moreno, I., Caminero, M.Á., Rodríguez, G.P. and López-Cela, J.J. (2019) Effect of Thermal Ageing on the Impact and Flexural Damage Behaviour of Carbon Fibre-Reinforced Epoxy Laminates. Polymers, 11. https://doi.org/10.3390/polym11010080.
  • Hannou, A., Ferhoum, R., Almansba, M., Habak, M. and Velasco, R. (2023) Thermal Aging Effect on the Compression Behavior of Thermoplastic Polymers—Proposed Phenomenological Model. Journal of Failure Analysis and Prevention, 23. https://doi.org/10.1007/s11668-023-01608-9.
  • Bahrololoumi, A., Shaafaey, M., Ayoub, G. and Dargazany, R. (2022) Thermal Aging Coupled with Cyclic Fatigue in Cross-Linked Polymers: Constitutive Modeling & FE Implementation. International Journal of Solids and Structures, 252. https://doi.org/10.1016/j.ijsolstr.2022.111800.
  • Yang, Y., Xian, G., Li, H. and Sui, L. (2015) Thermal Aging of an Anhydride-Cured Epoxy Resin. Polymer Degradation and Stability, 118. https://doi.org/10.1016/j.polymdegradstab.2015.04.017.
  • Korolev, A., Mishnev, M., Vatin, N.I. and Ignatova, A. (2021) Prolonged Thermal Relaxation of the Thermosetting Polymers. Polymers, 13. https://doi.org/10.3390/polym13234104.
  • Mishnev, M., Korolev, A., Ekaterina, B. and Dmitrii, U. (2022) Effect of Long-Term Thermal Relaxation of Epoxy Binder on Thermoelasticity of Fiberglass Plastics: Multiscale Modeling and Experiments. Polymers, 14. https://doi.org/10.3390/polym14091712.
  • Drozdov, A.D., Høj Jermiin, R. and de Claville Christiansen, J. (2023) Lifetime Predictions for High-Density Polyethylene under Creep: Experiments and Modeling. Polymers, 15. https://doi.org/10.3390/polym15020334.
  • Amjadi, M. and Fatemi, A. (2021) Creep Behavior and Modeling of High-Density Polyethylene (HDPE). Polymer Testing, 94. https://doi.org/10.1016/j.polymertesting.2020.107031.
  • Lainé, E., Bouvy, C., Grandidier, J.C. and Vaes, G. (2019) Methodology of Accelerated Characterization for Long-Term Creep Prediction of Polymer Structures to Ensure Their Service Life. Polymer Testing, 79. https://doi.org/10.1016/j.polymertesting.2019.106050.
  • Ribeiro, J.G.T., Castro, J.T.P. De and Meggiolaro, M.A. (2021) Modeling Concrete and Polymer Creep Using Fractional Calculus. Journal of Materials Research and Technology, 12. https://doi.org/10.1016/j.jmrt.2021.03.007.
  • Raghavan, J. and Meshii, M. (1998) Creep of Polymer Composites. Composites Science and Technology, 57. https://doi.org/10.1016/S0266-3538(97)00104-8.
  • Hassanzadeh-Aghdam, M.K., Ansari, R., Mahmoodi, M.J. and Darvizeh, A. (2018) Effect of Nanoparticle Aggregation on the Creep Behavior of Polymer Nanocomposites. Composites Science and Technology, 162. https://doi.org/10.1016/j.compscitech.2018.04.025.
  • Chang, Z., Wang, Y., Zhang, Z., Gao, K., Hou, G., Shen, J., Zhang, L. and Liu, J. (2021) Creep Behavior of Polymer Nanocomposites: Insights from Molecular Dynamics Simulation. Polymer, 228. https://doi.org/10.1016/j.polymer.2021.123895.
  • Eshmatov, B.K., Abdikarimov, R.A., Amabili, M. and Vatin, N.I. (2023) Nonlinear Vibrations and Dynamic Stability of Viscoelastic Anisotropic Fiber Reinforced Plates. Magazine of Civil Engineering, 118. https://doi.org/10.34910/MCE.118.11.
  • Guedes, R.M. (2019) Creep and Fatigue in Polymer Matrix Composites. Creep and Fatigue in Polymer Matrix Composites. https://doi.org/10.1016/C2017-0-02292-9.
  • Saood, A., Khan, A.H., Equbal, M.I., Saxena, K.K., Prakash, C., Vatin, N.I. and Dixit, S. (2022) Influence of Fiber Angle on Steady-State Response of Laminated Composite Rectangular Plates. Materials, 15. https://doi.org/10.3390/ma15165559.
  • Veerapandian, V., Pandulu, G., Jayaseelan, R., Kumar, V.S., Murali, G. and Vatin, N.I. (2022) Numerical Modelling of Geopolymer Concrete In-Filled Fibre-Reinforced Polymer Composite Columns Subjected to Axial Compression Loading. Materials, 15. https://doi.org/10.3390/ma15093390.
  • Mohamed, M., Johnson, M. and Taheri, F. (2019) On the Thermal Fatigue of a Room-Cured Neat Epoxy and Its Composite. Open Journal of Composite Materials, 9, 145–163. https://doi.org/10.4236/ojcm.2019.92007.
  • GOST 19907-83. Dielectric Fabrics Made of Glass Twisted Complex Threads. Specifications. https://files.stroyinf.ru/Data2/1/4294833/4294833537.pdf.
  • SP 43.13330.2012. Constructions of the Industrial Enterprises. https://files.stroyinf.ru/Data2/1/4293795/4293795651.pdf.
  • SP 20.13330.2016. Loads and Actions. https://files.stroyinf.ru/Data2/1/4293747/4293747667.pdf.
  • SP 61.13330.2012. Designing of Thermal Insulation of Equipment and Pipe Lines. https://files.stroyinf.ru/Data2/1/4293796/4293796604.pdf.
Еще
Статья научная