Nanostructural changes in the components of chrysotile-cement dust under the influence of different levels of acidity and exposure time

Автор: Klyuev S.V., Naumova L.N., Nedoseko I.V., Klyuev A.V., Shorstova E.S.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: The results of the specialists’ and scientists’ researches

Статья в выпуске: 4 Vol.16, 2024 года.

Бесплатный доступ

Introduction. The article considers the issue of modifying the initial chrysotile fiber and its bundles by the action of hydration products of Portland cement and various acidity value of the treated medium. A brief justification of the relevance of the research topic is provided. It is noted that recently, issues of production of composite materials based on natural and man-made raw materials, which are a promising area of modern economics, have aroused great scientific and practical interest. The availability and low cost of raw materials, as well as low energy, transportation, and overhead costs, contribute to reducing the cost of composite materials. At the same time, the high contractual prices and strong demand in both domestic and foreign markets provide incentives for increasing production volumes. The aim of the research is to study the behavior of the initial chrysotile fibers and their aggregates in the composition of the cement component under the influence of different acidity of the treated medium. Research objective: to investigate the behavior of chrysotile cement dust components under an aggressive environmental condition with electron microscopy examination; calculation of the number and dimensional characteristics of nanofibers and dust particles under the influence of various exposure times of the aggressive factor; microdifraction studies of the nanostructure of the studied samples after exposure to acidic media. Materials and methods. The materials used in the research and their characteristics are given, in particular, chrysotile cement dust containing fibers of commercial chrysotile, acidity of the medium, exposure time, micro- and nanofibers obtained after exposure to aggressive medium. Samples of chrysotile cement dust were taken at the slate production No.1 of JSC “BelACI” and collected at the place of sawing of chrysotile cement products, underwent the stage of dispersion using a centrifugal separator. In the work chrysotile cement dust was used as an object of environmental pollution and its further use in the production of composite chrysotile cement products. Results. The results of studies on the influence of aggressive environment on the components of chrysotile-cement dust, their size characteristics, and structural nano-changes are presented. The studied samples have been examined in a scanning ion-electron microscope at magnifications of 200x, 500x, 5000x, 10000x, and their chemical composition have been analyzed. Discussion. The results of analysis of the obtained experimental data are given. Quantitative composition of fibers and aggregates of fibers in chrysotile cement dust changes after its exposure in acidic medium in comparison with their quantity in initial chrysotile cement dust, and the quantity of separate thin fibers increases, it is explained by the fact that in acidic medium there is not only destruction of cement stone, but also splitting of bundles of chrysotile fibers into micro- and nanofibers. Conclusions. Electron microscopic examination of initial commercial chrysotile fibers and their bundles in cement dust have shown changes in their dimensional and quantitative characteristics, including the products of Portland cement hydration under the influence of the factor of aggressiveness of the environment.

Еще

Commercial chrysotile, chrysotile cement dust, micro- and nanofibers, hydration products, acidity of the medium, quantitative and dimensional characteristics

Короткий адрес: https://sciup.org/142242264

IDR: 142242264   |   DOI: 10.15828/2075-8545-2024-16-4-361-374

Список литературы Nanostructural changes in the components of chrysotile-cement dust under the influence of different levels of acidity and exposure time

  • Zayed A.M., El-Khayatt A.M., Petrounias P., Shahien M.G., Mahmoud K.A., Rashad A.M., et al. From discarded waste to valuable products: Barite combination with chrysotile mine waste to produce radiation-shielding concrete. Constr Build Mater 2024;417:135334. https://doi.org/10.1016/j.conbuildmat.2024.135334
  • Shkarednaya S.A., Kaskevich T.M. Asbestos-containing products and building materials. 2005; 2:37 – 39.
  • Akylbekov Y., Shevko V., Karatayeva G. Thermodynamic prediction of the possibility of comprehensive processing chrysotile-asbestos waste. Case Stud Chem Environ Eng 2023;8:100488. https://doi.org/10.1016/j.cscee.2023.100488
  • Cai N., Wang K., Li N., Huang S., Xiao Q. Novel sandwich structured chrysotile fiber separator for advanced lithium-ion batteries. Appl Clay Sci 2019;183:105327. https://doi.org/10.1016/j.clay.2019.105327
  • Radvanec M., Tuček Ľ., Derco J., Čechovská K., Németh Z. Change of carcinogenic chrysotile fibers in the asbestos cement (eternit) to harmless waste by artificial carbonatization: Petrological and technological results. J Hazard Mater 2013;252–253:390–400. https://doi.org/10.1016/j.jhazmat.2013.02.036
  • Gualtieri A.F., Bursi Gandolfi N., Pollastri S., Burghammer M., Tibaldi E., Belpoggi F., et al. New insights into the toxicity of mineral fibres: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats. Toxicol Lett 2017;274:20–30. https://doi.org/10.1016/j.toxlet.2017.04.004
  • Wronkiewicz S.K., Roggli V.L., Hinrichs B.H., Kendler A., Butler R.A., Christensen B.C., et al. Chrysotile fibers in tissue adjacent to laryngeal squamous cell carcinoma in cases with a history of occupational asbestos exposure. Mod Pathol 2020;33:228–34. https://doi.org/10.1038/s41379-019-0332-7
  • Lemen R.A., Wagner G.R. Asbestos. Ref. Modul. Biomed. Sci., Elsevier; 2024. https://doi.org/10.1016/B978-0-323-99967-0.00192-7
  • Kuhta T.N. Enhancing the durability of polymer coatings on asbestos-cement sheets using a water repellent. Construction Materials. 2010; 1: 58 – 60
  • Tan Y., Zou Z., Qu J., Ren J., Wu C., Xu Z. Mechanochemical conversion of chrysotile asbestos tailing into struvite for full elements utilization as citric-acid soluble fertilizer. J Clean Prod 2021;283:124637. https://doi.org/10.1016/j.jclepro.2020.124637
  • Fedyuk R.S., Lesovik V.S., Liseitsev Yu.L., Timokhin R.A., Bituev A.V., Zayakhanov M.I., et al. Composite binders for concrete with increased impact resistance. Engineering and Construction Journal, 2019. 85. 28-38. https://doi.org/10.18720/MCE.85.3
  • Valouma A., Verganelaki A., Maravelaki-Kalaitzaki P., Gidarakos E. Chrysotile asbestos detoxification with a combined treatment of oxalic acid and silicates producing amorphous silica and biomaterial. J Hazard Mater 2016;305:164–70. https://doi.org/10.1016/j.jhazmat.2015.11.036.
  • Klyuyev S.V., Klyuyev A.V., Sopin D.M., Netrebenko A.V., Kazlitin S.A. Heavy loaded floors based on finegrained fiber concrete. Magazine of Civil Engineering. 2013;38(3):7–14.
  • Sambueva S.R., Batomunkueva Ts.D.D. Structural parameters of YBa2Cu3-xO6+y. Chemical Bulletin. 2024; 7 (1): 41 – 48. https://doi.org/10.58224/2619-0575-2024-7-1-41-48
  • Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. Environ Res 2023;230:114580. https://doi.org/10.1016/j.envres.2022.114580
  • Gualtieri A.F., Malferrari D., Di Giuseppe D., Scognamiglio V., Sala O., Gualtieri M.L., et al. There is plenty of asbestos at the bottom. The case of magnesite raw material contaminated with asbestos fibres. Sci Total Environ 2023;898:166275. https://doi.org/10.1016/j.scitotenv.2023.166275
  • Peng Q., Dai Y., Liu K., Tang X., Zhou M., Zhang Y., et al. Outstanding catalytic performance of metal-free peroxymonosulfate activator: Important role of chrysotile. Sep Purif Technol 2022;287:120526. https://doi.org/10.1016/j.seppur.2022.120526
  • Xing J., Peng Q., Zhong W., Zhang Y., Wang X., Liu K. Highly efficient activation of peroxymonosulfate by novel CuO-Chrysotile catalytic membrane for degradation of p-nitrophenol. J Water Process Eng 2023;51:103403. https://doi.org/10.1016/j.jwpe.2022.103403
  • Lyakishev V.K., Perfilyev M.S. Quantum model of anharmonic vibrations of a diatomic molecule with a variable force constant and a small value of the anharmonicity coefficient. Chemical Bulletin. 2024. 7 (1). P. 22 – 31. https://doi.org/10.58224/2619-0575-2024-7-1-22-31
  • Fantone S., Tossetta G., Cianfruglia L., Frontini A., Armeni T., Procopio A.D., et al. Mechanisms of action of mineral fibres in a placental syncytiotrophoblast model: An in vitro toxicology study. Chem Biol Interact 2024;390:110895. https://doi.org/10.1016/j.cbi.2024.110895
  • Fediuk R., Smoliakov A., Stoyushko N. Increase in composite binder activity. IOP Conf. Ser. Mater. Sci. Eng., vol. 156, 2016. https://doi.org/10.1088/1757-899X/156/1/012042
  • Yoshida N., Saeki Y. Chrysotile fibers penetrate Escherichia coli cell membrane and cause cell bursting by sliding friction force on agar plates. J Biosci Bioeng 2004;97:162–8. https://doi.org/10.1016/S1389-1723(04)70186-3
  • Masoud M.A., El-Khayatt A.M., Mahmoud K.A., Rashad A.M., Shahien M.G., Bakhit B.R., et al. Valorization of hazardous chrysotile by H3BO3 incorporation to produce an innovative eco-friendly radiation shielding concrete: Implications on physico-mechanical, hydration, microstructural, and shielding properties. Cem Concr Compos 2023;141:105120. https://doi.org/10.1016/j.cemconcomp.2023.105120
  • Bernstein D.M., Toth B., Rogers R.A., Kunzendorf P., Phillips J.I., Schaudien D. Final results from a 90-day quantitative inhalation toxicology study evaluating the dose-response and fate in the lung and pleura of chrysotilecontaining brake dust compared to TiO2, chrysotile, crocidolite or amosite asbestos: Histopathological examinat. Toxicol Appl Pharmacol 2021;424:115598. https://doi.org/10.1016/j.taap.2021.115598
  • Chagarova O.V., Milinsky A.Yu., Kositsyna O.A. Application of thermal methods for the analysis of organic matter content in urbanozems. Chemical Bulletin. 2024. 7 (1). P. 32 – 40. https://doi.org/10.58224/2619-0575-2024-7-1-32-40
  • Abbasi M., Hosseiny B., Stewart R.A., Kalantari M., Patorniti N., Mostafa S., et al. Multi-temporal change detection of asbestos roofing: A hybrid object-based deep learning framework with post-classification structure. Remote
  • Sens Appl Soc Environ 2024;34:101167. https://doi.org/10.1016/j.rsase.2024.101167
  • Bernasconi A., Pellegrino L., Vergani F., Campanale F., Marian N.M., Galimberti L., et al. Recycling detoxified cement asbestos slates in the production of ceramic sanitary wares. Ceram Int 2023;49:1836–45. https://doi.org/10.1016/j.ceramint.2022.09.147
  • Saba M., Torres Gil L.K., Chanchí Golondrino G.E. Physicochemical analysis of primers and liquid membranes as asbestos’ encapsulant. Constr Build Mater 2023;409:133972. https://doi.org/10.1016/j.conbuildmat.2023.133972
  • Ranaivomanana H., Leklou N. Investigation of microstructural and mechanical properties of partially hydrated Asbestos-Free fiber cement waste (AFFC) based concretes: Experimental study and predictive modeling. Constr Build Mater 2021;277:121943. https://doi.org/10.1016/j.conbuildmat.2020.121943
  • Punenkov S.E. Composites materials based on natural chrysotile fibers. Chemical Bulletin. 2024. 7 (1). P. 4 – 21. https://doi.org/10.58224/2619-0575-2024-7-1-4-21
  • Klyuyev S.V., Kashapov N.F., Radaykin O.V., Sabitov L.S., Klyuyev A.V., Shchekina N.A. Reliability coefficient for fibreconcrete material. Construction Materials and Products 2022;5:51–58. https://doi.org/10.34031/2618-7183-2022-5-2-51-58
  • Boffetta P., Righi L., Ciocan C., Pelucchi C., La Vecchia C., Romano C., et al. Validation of the diagnosis of mesothelioma and BAP1 protein expression in a cohort of asbestos textile workers from Northern Italy. Ann Oncol 2018;29:484–9. https://doi.org/10.1093/annonc/mdx762
  • Sabat M., Fares N., Mitri G., Kfoury A. Determination of asbestos cement rooftop surface composition using regression analysis and hyper-spectral reflectance data in the visible and near-infrared ranges. J Hazard Mater 2024;469:134006. https://doi.org/10.1016/j.jhazmat.2024.134006
  • Klyuyev S.V., Guryanov Yu.V. External reinforcing of fiber concrete constructions by carbon fiber tapes. Magazine of Civil Engineering. 2013; 36(1):21–26.
  • Feletto E., Schonfeld S.J., Kovalevskiy E .V., Bukhtiyarov I.V., Kashanskiy S.V., Moissonnier M., et al. A comparison of parallel dust and fibre measurements of airborne chrysotile asbestos in a large mine and processing factories in the Russian Federation. Int J Hyg Environ Health 2017;220:857–68. https://doi.org/10.1016/j.ijheh.2017.04.001
  • Bridle J., Hoskins J. Canadian hypocrisy regarding chrysotile. Lancet 2011;377:720. https://doi.org/10.1016/S0140-6736(11)60271-7
  • Punenkov S.E., Kozlov Yu.S. Chrysotile asbestos and resource conservation in the chrysotile asbestos industry. Mining Journal of Kazakhstan. 2022; 1: 5 – 10.
  • Chaumba J.B., Mamuse A. Petrographic and mineral chemistry investigation of the high-grade chrysotile asbestos-bearing Zvishavane Ultramafic Complex, south central Zimbabwe. Geochemistry 2023;83:125950. https://doi.org/10.1016/j.chemer.2023.125950
  • Biondi J.C. Neoproterozoic Cana Brava chrysotile deposit (Goiás, Brazil): Geology and geochemistry of chrysotile vein formation. Lithos 2014;184–187:132–54. https://doi.org/10.1016/j.lithos.2013.10.017
  • Kuznetsov D.V., Klyuev S.V., Ryazanov A.N., Sinitsin D.A., Pudovkin A.N., Kobeleva E.V., Nedoseko I.V. Dry mixes on gypsum and mixed bases in the construction of low-rise residential buildings using 3D printing technology. Construction Materials and Products. 2023. 6 (6). 5. https://doi.org/10.58224/2618-7183-2023-6-6-5
  • Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V. Development of alkaliactivated binders based on technogenic fibrous materials. Construction Materials and Products. 2023; 6 (1): 60–73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73
  • Klyuev A.V., Kashapov N.F., Klyuev S.V., Zolotareva S.V., Shchekina N.A., Shorstova E.S., Lesovik R.V., Ayubov N.A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023; 6 (2):5 – 18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18
  • Hodel F., Macouin M., Triantafyllou A., Carlut J., Berger J., Rousse S., et al. Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Anti-Atlas, Morocco). Precambrian Res 2017;300:151–67. https://doi.org/10.1016/j.precamres.2017.08.005
  • Naumova L.N. Influence of acidic environment on the properties of chrysotile-cement dust. Bulletin of BSTU named after V.G. Shukhov 2011 ; 2: 24-27.
  • Portella Y de M., Conceição R.V., Siqueira T.A., Gomes L.B., Iglesias R.S. Experimental evidence of pressure effects on spinel dissolution and peridotite serpentinization kinetics under shallow hydrothermal conditions. Geosci Front 2024;15:101763. https://doi.org/10.1016/j.gsf.2023.101763
  • Wang L., Xiong Q., Zheng J-P., Dai H-K., Tian L-R., Zhou X. Multistage and diverse melt-mantle interaction in dunite-harzburgite channel systems beneath oceanic slow-ultraslow spreading centers: Evidence from the Xigaze ophiolite (Tibet). Lithos 2024;468–469:107501. https://doi.org/10.1016/j.lithos.2024.107501
  • Capitani G., Dalpiaz M., Vergani F., Campanale F., Conconi R., Odorizzi S. Recycling thermally deactivated asbestos cement in mortar: A possible route towards a rapid conclusion of the “asbestos problem.” J Environ Manage 2024;355:120507. https://doi.org/10.1016/j.jenvman.2024.120507
  • Fitzgerald S.M. Resolving asbestos and ultrafine particulate definitions with carcinogenicity. Lung Cancer 2024:107478. https://doi.org/10.1016/j.lungcan.2024.107478
  • Jefferson I.F., Evstatiev D., Karastanev D., Mavlyanova N.G., Smalley I.J. Engineering geology of loess and loess-like deposits: a commentary on the Russian literature. Eng Geol 2003;68:333–51. https://doi.org/10.1016/S0013-7952(02)00236-3
  • Okrostsvaridze A., Chung S-L., Lin Y-C., Skhirtladze I. Geology and zircon U-Pb geochronology of the Mtkvari pyroclastic flow and evaluation of destructive processes affecting Vardzia rock-cut city, Georgia. Quat Int 2020;540:137–45. https://doi.org/10.1016/j.quaint.2019.03.026
  • Liu W., Wan B. Carbon flux from hydrothermal skarn ore deposits and its potential impact to the environment. Gondwana Res 2024;126:343–54. https://doi.org/10.1016/j.gr.2023.09.017
Еще
Статья научная