Некоторые молекулярно-генетические факторы риска фиброза миокарда (обзор литературы)
Автор: Гриценко О.В., Чумакова Г.А., Понасенко А.В., Груздева О.В.
Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk
Рубрика: Обзоры и лекции
Статья в выпуске: 3 т.37, 2022 года.
Бесплатный доступ
Фиброз миокарда является многофакторным процессом, к которому предрасполагает ряд клеточных и молекулярных факторов, уровень которых детерминирован генетически. В данном обзоре рассмотрены некоторые генетические варианты, имеющие непосредственное отношение к развитию кардиофиброза и открывающие перспективы научных исследований по оценке риска сердечной недостаточности (СН) при различной сердечно-сосудистой патологии.
Фиброз миокарда, ген, генетическая вариабельность, сердечная недостаточность
Короткий адрес: https://sciup.org/149141436
IDR: 149141436 | DOI: 10.29001/2073-8552-2022-37-3-56-64
Список литературы Некоторые молекулярно-генетические факторы риска фиброза миокарда (обзор литературы)
- Гончарова И.А., Печерина Т.Б., Марков А.В., Кашталап В.В., Тара-сенко Н.В., Пузырев В.П. и др. Роль генов фиброгенеза в формировании подверженности к коронарному атеросклерозу. Кардиология. 2018;58(8):33-44. DOI: 10.18087/cardio.2018.8.10160. Goncharova I.A., Pecherina T.B., IVIarkov A.V., Kashtalap V.V., Tarasen-ko N.V., Puzyrev V.P. et al. Fibrogenesis genes and susceptibility to coronary atherosclerosis. Kardiologiia. 2018;58(8):33-44. (In Russ.) DOI: 10.18087/cardio.2018.8.10160.
- Ping K., Panagiota C., Frangogiannis N.G. The pathogenesis of сardiac fibrosis. Cell Mol. Life Sci. 2014;71(4): 549-574. DOI: 10.1007/s00018-013-1349-6.
- Asbun J., Villarreal F.J. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2006;47(4):693-700. DOI: 10.1016/j.jacc.2005.09.050.
- Bharati S., Lev М. Cardiac conduction system involvement in sudden death of obese young people. Am. Heart J. 1995;129(2):273-281. DOI: 10.1016/0002-8703(95)90008-x.
- Печерина Т.Б., Кутихин А.Г. Биомаркеры фиброза миокарда и их генетическое регулирование у пациентов с сердечной недостаточностью. Российский кардиологический журнал. 2020;25(10):3933. DOI: 10.15829/1560- 4071-2020-3933. Pecherina T.B., Kutikhin A.G. Biomarkers of myocardial fibrosis and their genetic regulation in patients with heart failure. Russian Journal of Cardiology. 2020;25(10):3933. (In Russ.). DOI: 10.15829/1560-4071-20203933.
- Chan J.J., Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int. J. Mol. Sci. 2018;19(5):1310. DOI: 10.3390/ijms19051310.
- Wlattick J.S., Wlakunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006;(1):R17-29. DOI: 10.1093/hmg/ddl046.
- Panni S., Lovering R.C., Porras P., Orchard S. Non-coding RNA regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194417. DOI: 10.1016/j.bbagrm.2019.194417.
- Ramirez-Bello J., Jimenez-morales М. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases. Gac. Med. Mex. 2017;153(2):238-250.
- Kwok Z.H., Tay Y. Long noncoding RNAs: Lincs between human health and disease. Biochem. Soc. Trans. 2017;45(3):805-812. DOI: 10.1042/ BST20160376.
- Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer. 2018;18(1):5-18. DOI: 10.1038/nrc.2017.99.
- Wlicheletti R., Plaisance I., Abraham B.J., Sarre A., Ching-Chia Ting, Alexanian М. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med. 2017;9(395):eaai9118. DOI: 10.1126/scitranslmed.aai9118.
- Boon R.A., Dimmeler S. WlicroRNAs in myocardial infarction. Nat. Rev. Cardiol. 2015;12(3):135-142. DOI: 10.1038/nrcardio.2014.207.
- Lu P., Ding F., Xiang Y.K., Hao L., Zhao М. Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells. 2022;11(5):777. DOI: 10.3390/ cells11050777.
- Rooij E., Sutherland L.B., Liu N., Williams A.H., WlcAnally J., Gerard R.D. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U S A. 2006;103(48):18255-18260. DOI: 10.1073/pnas.0608791103.
- Ilieva М., Wliller H.E., Agarwal A., Paulus G.K., Wladsen J.H., Bishop A.J.R. et al. FibroDB: Expression Analysis of Protein-Coding and Long Non-Coding RNA Genes in Fibrosis. Noncoding RNA. 2022;28;8(1):13. DOI: 10.3390/ncrna8010013.
- Trinh K., Julovi S.M., Rogers N.M. The role of matrix proteins in cardiac pathology. Int. J. Mol. Sci. 2022;23(3):1338. DOI: 10.3390/ijms23031338.
- Mohammadhosayni M., Khosrojerdi A., Lorian K., Aslani S., Imani D., Razi B. et al. Matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of multiple sclerosis: Systematic review and meta-analysis. BMC Neurol. 2020;20(1):218. DOI: 10.1186/s12883-020-01804-2.
- Li T., Lv Z., Jing J.J., Yang J., Yuan Y. Matrix metalloproteinase family polymorphisms and the risk of aortic aneurysmal diseases: A systematic review and meta-analysis. Clin. Genet. 2018;93(1):15-32. DOI: 10.1111/ cge.13050.
- Opstad T.B., Arnesen H., Pettersen A.A., Seljeflot I. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease. 2014;9(9):e106816 DOI: 10.1371/journal.pone.0106816.
- Luizon M.R., Belo V.A., Fernandes K.S., Andrade V.L., Tanus-Santos J.E., Sandrim V.C. Plasma matrix metalloproteinase-9 levels, MMP-9 gene haplotypes, and cardiovascular risk in obese subjects. Mol. Biol. Rep. 2016;43(6):463-471. DOI: 10.1007/s11033-016-3993-z.
- DeLeon-Pennell K.Y., Meschiari C.A., Jung M., Lindsey M.L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl. Sci. 2017;147:75-100. DOI: 10.1016/bs.pmbts.2017.02.001.
- Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003;92(8):827-839. DOI: 10.1161/01.RES.0000070112.80711.3D.
- Velho F.M., Cohen C.R., Santos K.G., Silvello D., Martinelli N., Biolo A. et al. Polymorphisms of matrix metalloproteinases in systolic heart failure: Role on disease susceptibility, phenotypic characteristics, and prognosis. J. Card. Fail. 2011;17(2):115-121. DOI: 10.1016/j.card-fail.2010.09.017.
- Martin T.N., Penney D.E., Smith J.A., Groenning B.A., Dargie H.J., Hillis G.S. Matrix metalloproteinase-1 promoter polymorphisms and changes in left ventricular volume following acute myocardial infarction. Am. J. Cardiol. 2004;94(8):1044-1046. DOI: 10.1016/j.amj-card.2004.06.064.
- Lindner D., Zietsch C., Becher P.M., Schulze K., Schultheiss H.P., Tschope C. et al. Differential expression of matrix metalloproteas-es in human fibroblasts with different origins. Biochem. Res. Int. 2012;2012:875742. DOI: 10.1155/2012/875742.
- Sage E.H., Reed M., Funk S.E., Truong T., Steadele M., Puolakkainen P. et al. Cleavage of the matricellular protein sparc by matrix metallopro-teinase 3 produces polypeptides that influence angiogenesis. J. Biol. Chem. 2003;278(39):37849-37857. DOI: 10.1074/jbc.M302946200.
- Mashhadiabbas F., Neamatzadeh H., Foroughi E., Dastgheib S.A., Farahnak S., Nasiri R. et al. Association of MMP-2-753C>T and MMP-9-1562C>T Polymorphisms with Chronic/Aggressive Periodontitis Risk: A Systematic Review and Meta-Analysis. Iran. J. Public. Health. 2019;48(7):1227-1238.
- Yabluchanskiy A., Ma Y., Iyer R.P., Hall M.E., Lindsey M.L. Matrix metal-loproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013;28(6):391-403. DOI: 10.1152/physiol.00029.2013.
- Blankenberg S., Rupprecht H.J., Poirier O., Bickel C., Smieja M., Hafner G. et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107(12):1579-1585. DOI: 10.1161/01. CIR.0000058700.41738.12.
- Dai H., Chen L., Gao D., Fei A. Phosphocreatine attenuates isoprotere-nol-induced cardiac fibrosis and cardiomyocyte apoptosis. Biomed. Res. Int. 2019;2019:5408289. DOI: 10.1155/2019/5408289.
- Squire I.B., Evans J., Ng L.L., Loftus I.M., Thompson M.M. Plasma mmp-9 and mmp-2 following acute myocardial infarction in man: Correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. Journal of Cardiac Failure. 2004;10(4):328-333. DOI: 10.1016/j.cardfail.2003.11.003.
- Wang X., Shi L.Z. Association of matrix metalloproteinase-9 c1562t polymorphism and coronary artery disease: A meta-analysis. J. Zhejiang Univ. Sci. B. 2014;15(3):256-263. DOI: 10.1631/jzus.B1300088.
- Lacchini R., Metzger I.F., Luizon M., Ishizawa M., Tanus-Santos J.E. Interethnic differences in the distribution of matrix metalloproteinases genetic polymorphisms are consistent with interethnic differences in disease prevalence. DNA Cell Biol. 2010;29(11):649-655. DOI: 10.1089/ dna.2010.1056.
- Horwich T.B., Fonarow G.C. Glucose, obesity, metabolic syndrome, and diabetes relevance to Incidence of heart failure. J. Am. Coll. Cardiol. 2010;55(4):283-293. DOI: 10.1016/j.jacc.2009.07.029.
- Kremastiotis G., Handa I., Jackson C., George S., Johnson J. Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Sci. Rep. 2021;11(1):23081. DOI: 10.1038/s41598-021-02508-4.
- Mazuchova J., Halasova E., Mazuch J., Sarlinova M., Valentova V., Franekova M. et al. Investigation of Association between Genetic Polymorphisms of MMP2, MMP8, MMP9 and TIMP2 and Development of Varicose Veins in the Slovak Population - Pilot Study. Physiol. Res. 2020;69(3):S443-S454. DOI: 10.33549/physiolres.934597.
- Kandalam V., Basu R., Moore L., Fan D., Wang X., Jaworski D.M. et al. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation. 2011;124(19):2094-2105. DOI: 10.1161/CIRCULATIONAHA.111.030338.
- Moore L., Fan D., Basu R., Kandalam V., Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail. Rev. 2012;17(4-5):693-706. DOI: 10.1007/s10741-011-9266-y.
- Schanz M., Shi J., Wasser C., Alscher M.D., Kimmel M. Urinary [TIMP-2] x [IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure. Clin. Cardiol. 2017;40:485-491. DOI: 10.1002/clc.22683.
- Fan D., Takawale A., Basu R., Patel V., Lee J., Kandalam V. et al. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc. Res. 2014;103(2):268-280. DOI: 10.1093/cvr/cvu072.
- Polina E.R., Araujo R.R.C.V., Sbruzzi R.C., Biolo A., Rohde L.E., Clausell N. et al. Relationship of polymorphisms in the tissue inhibitor of metalloproteinase (TIMP)-1 and -2 genes with chronic heart failure. Sci. Rep. 2018;8(1):9446. DOI: 10.1038/s41598-018-27857-5.
- Alp E., Yilmaz A., Tulmac M., Dikmen A.U., Cengel A., Yalcin R. et al. Analysis of MMP-7 and TIMP-2 gene polymorphisms in coronary artery disease and myocardial infarction: A Turkish case-control study. Kaohsi-ung J. Med. Sci. 2017;33(2):78-85. DOI: 10.1016/j.kjms.2016.12.002.
- Lin T.H., Chiu H.C., Lee Y.T., Su H.M., Juo S.H., Voon W.C. et al. The C-allele of tissue inhibitor of metalloproteinases 2 is associated with increased magnitude of QT dispersion prolongation in elderly Chinese -4-year follow-up study. Clin. Chim. Acta. 2007;386(1-2):87-93. DOI: 10.1016/j.cca.2007.08.004.
- Jia M., Li Z.B., Li L., Chu H.T., Li Z.Z. Role of matrix metalloproteinase-7 and apoptosis-associated gene expression levels in the pathogenesis of atrial fibrosis in a Beagle dog model. Mol. Med. Rep. 2017;16(5):6967-6973. DOI: 10.3892/mmr.2017.7415.
- Dong H., Dong S., Zhang L., Gao X., Lv G., Chen W. et al. MicroR-NA-214 exerts a Cardio-protective effect by inhibition of fibrosis. Anat. Rec. (Hoboken). 2016;299(10):1348-1357. DOI: 10.1002/ar.23396.
- Lu Y., Boer J.M.A., Barsova R.M., Favorova O., Goel A., Müller M. et al. TGFB1 genetic polymorphisms and coronary heart disease risk: A meta-analysis. BMC Med. Genet. 2012;13:39. DOI: 10.1186/1471-235013-39.
- Gichkun O.E., Shevchenko O.P., Kurabekova R.M., Mozheiko N.P., Shevchenko A.O. The rs1800470 polymorphism of the TGFB1 gene is associated with myocardial fibrosis in heart transplant recipients. Acta Naturae. 2021;13(4):42-46. DOI: 10.32607/actanaturae.11469.
- Shah R., Hurley C.K., Posch P.E. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP -509C-T (c. -1347C>T). Hum. Genet. 2006;120(4):461-469. DOI: 10.1007/s00439-006-0194-1.
- Barsova R.M., Titov B.V., Matveeva N.A., Favorov A.V., Sukhinina T.S., Shahnovich R.M. et al. Contribution of the TGFB1 gene to myocardial infarction susceptibility. Acta Naturae. 2012;4(2):74-79.
- Брусенцов Д.А., Никулина С.Ю., Шестерня П.А., Чернова А.А. Ассоциация полиморфных вариантов RS1800470 гена трансформирующего ростового фактора ß1 (TGF-ß1) с тяжестью коронарного атеросклероза. Российский кардиологический журнал. 2018;(10):43-47. DOI: 10.15829/1560-4071-2018-10-43-47. Brusentsov D.A., Nikulina S.Yu., Shesternya P.A., Chernova A.A. Association of RS1800470 polymorphic variants of the transforming growth factor ß1 (TGF-ß1) gene with the severity of coronary atherosclerosis. Russian Journal of Cardiology. 2018;(10):43-47. (In Russ.). DOI: org/10.15829/1560-4071-2018-10-43-47.
- Crobu F., Palumbo L., Franco E., Bergerone S., Carturan S., Guarrera S. et al. Role of TGF-ß1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Med. Genet. 2008;9:13. DOI: 10.1186/1471-2350-9-13.
- Liu S., Ke W., Liu Y., Zhao Z., An L., You X. et al. Function analysis of differentially expressed microRNAs in TGF-ß1-induced cardiac fibroblasts differentiation. Biosci. Rep. 2019;39(10):BSR20182048. DOI: 10.1042/ BSR20182048.
- Cocciolone A.J., Hawes J.Z., Staiculescu M.C., Johnson E.O., Murshed M., Wagenseil J.E. Elastin, arterial mechanics, and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2018;315(2):H189-H205. DOI: 10.1152/ajpheart.00087.2018.
- Tassabehji M., Metcalfe K., Donnai D., Hurst J., Reardon W., Burch M. et al. Elastin: Genomic structure and point mutations in patients with su-pravalvular aortic stenosis. Hum. Mol. Genet. 1997;6:1029-1036. DOI: 10.1093/hmg/6.7.1029.
- Li S.H., Sun Z., Guo L., Han M., Wood M.F., Ghosh N. et al. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation. J. Cell Mol. Med. 2012;16(10):2429-2439. DOI: 10.1111/j.1582-4934.2012.01560.x.