New philosophy of validation and verification for cardiology: classical proof theory imported from natural sciences
Автор: Rudenko Mikhail Y., Krstai Goran
Журнал: Cardiometry @cardiometry
Рубрика: Original research
Статья в выпуске: 4, 2014 года.
Бесплатный доступ
Aims Problems of validation and verification are very critical in medicine. The absence of adequate models describing biophysical processes in the organism leads to using only practical evidence for these purposes that hinders innovations. But advances in medicine require new effective ways to solve these problems. Cardiometry as a new field in cardiology offers a new philosophy of validation and verification based on the classical proof theory borrowed from natural sciences. The aim hereof is to provide a new methodology for validation and verification for cardiovascular diagnostics. Materials and methods Axiomatic concepts based on new laws and rules allow applying direct and indirect methods of proof for validation and verification in medicine. Results The formulated laws of cardiometry provide reliable tools for verification of the correspondence between the cardiac signals and the real biophysical processes in the cardiovascular system. Conclusion The proposed methodology for verification of the correspondence between the ECG shapes and the relevant biophysical processes has been successfully developed exclusively as a result of creation of the comprehensive theory of cardiac cycle phase analysis being the basis of cardiometry...
Evidence-based medicine, verification, validation, cardiology, ecg, metabolic processes, cardiometry, scientific research philosophy, science methodology
Короткий адрес: https://sciup.org/148308777
IDR: 148308777 | DOI: 10.12710/cardiometry.2014.4.1630
Список литературы New philosophy of validation and verification for cardiology: classical proof theory imported from natural sciences
- Knaapen L. Being 'evidence-based' in the absence of evidence: The management of non-evidence in guideline development. Social Studies of Science. October 2013;43(5):681-706.
- Worrall J. Evidence: Philosophy of science meets medicine. Journal of Evaluation in Clinical Practice. April 2010;16(2):356-362.
- Cambrosio A, Keating P, Schlich T, Weisz G. Regulatory objectivity and the generation and management of evidence in medicine. Social Science and Medicine. July 2006;63(1):189-199.
- Vineis P. Evidence-based medicine and ethics: A practical approach. Journal of Medical Ethics. April 2004;30(2):126-130.
- Simms JR. Making the soft sciences hard: The Newton model. Systems Research and Behavioral Science. January 2011;28(1):40-50.
- Rzepiński T. Empirical evidence in a process of clinical decision making [Ewidencja empiryczna w procesie podejmowania decyzji klinicznych]. Filozofia Nauki. 2012;20(3):13-33.
- Von Michalik K, Kwiatkowska M, Kielan K. Application of knowledge-engineering methods in medical knowledge management. Studies in Fuzziness and Soft Computing. 2013;302:205-214.
- Fung YC. Biomechanics: A Survey of the Blood Flow Problem. Advances in Applied Mechanics. 1971;11:65-130 DOI: 10.1016/S0065-2156(08)70341-7
- Jayalalitha G, Shanthoshini DV, Uthayakumar R. Fractal model for blood flow in cardiovascular system. Computers in Biology and Medicine. June 2008;38(6):684-693 DOI: 10.1016/j.compbiomed.2008.03.002
- Krstacic G, Krstacic A, Smalcelj A, Milicic D, Jembrek-Gostovic M. The chaos theory and nonlinear dynamics in heart rate variability analysis: Does it work in short-time series in patients with coronary heart disease? Annals of Non Invasive Electrocardiology. April 2007;12(2):130-6 DOI: 10.1111/j.1542-474X.2007.00151.x
- Krstacic G, Parati G, Gamberger D, Castiglioni P, Krstacic A, Steiner R. Heart rate variability and nonlinear dynamic analysis in patients with stress-induced cardiomyopathy. Medical & Biological Engineering & Computing. October 2012;50(10):1037-46 DOI: 10.1007/s11517-012-0947-z
- Knežević A, Martinis M, Krstačić G, Vargović E. Changes in multifractal properties for stable angina pectoris. Physica A: Statistical Mechanics and its Applications. 2005;358(2-4): 505-515.
- Martinis M, Knežević A, Krstačić G, Vargović E. Changes in the Hurst exponent of heartbeat intervals during physical activity. Physical Review E (Statistical, Nonlinear and Soft Matter Physics). 2004;70(1):1-4.
- Krstacic G, Gamberger D, Smuc T. Coronary Heart Disease Patient Models Based in Inductive Machine Learning. Lecture Notes in Artificial Intelligence. 2001;21(1):113-118.
- Sarayev I, Dovgal V, Kuzmenko A, Semichev A. Myocardial ischemia and determined chaos in integral homeostatic regulation. Journal of Clinical Monitoring and Computing. 2002;17(3-4):167-172.
- Abdul Sukor J, Redmond SJ, Chan GSH, Lovell NH. Signal quality measures for unsupervised blood pressure measurement. Physiological Measurement. March 2012;33(3):465-486.
- La Rovere MT, Maestri R, Pinna GD. Baroreflex sensitivity assessment -latest advances and strategies. US Cardiology. February 2012;9(1):22-25.
- Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Experimental Physiology. February 2014;99(2):312-319.
- Rudenko M.Y., Zernov V.A., Voronova O.K. Fundamental Research on the Mechanism of Cardiovascular System Hemodynamics Self-Regulation and Determination of the Norm-Pathology Boundary for the Basic Hemodynamic Parameters and Analysis of the Compensation Mechanism as a Method of Revealing the Underlying Causes of the Disease. Heart Rhythm. November 2012;9(11):1909 DOI: 10.1016/j.jelectrocard.2013.09.016
- Rudenko M.Y., Voronova O.K., Zernov V.A., Makedonsky D.F., et al. Theoretical Principles of Heart Cycle Phase Analysis. München-London-New York: Fouqué Literaturverlag. ISBN 978-3-937909-57-8.
- Rudenko M.Y., Zernov V.A., Mamberger K.K., Rudenko S.M. Heart and aortic baroreceptors: operation in providing hemodynamic processes in cardiovascular system. Cardiometry. November 2013;3:31-44 DOI: 10.12710/cardiometry.2013.3.3144
- Kolmakov SV. Comparative study of measured heart cycle phase durations: standard lead ECG versus original ascending aorta lead ECG. Cardiometry. November 2012;1:143-150 DOI: 10.12710/cardiometry.2012.1.142149
- Zernov V.A., Voronova O.K., Rudenko M.Y., Mamberger K.K., Makedonsky D.F., Rudenko S.M., Fedosov Y.V., Dyuzhikov A.A., Orlov A.N., Sobin S.V. Standardization of the ECG on the basis of cardiac cycle phase analysis. Cardiometry. November 2012;1:102-125 DOI: 10.12710/cardiometry.2012.1.101124
- Rudenko M.Y., Voronova O.K., Zernov V.A., Mamberger K.K., Makedonsky D.F., Rudenko S.M. Theoretical principles of cardiometry. Cardiometry. November 2012;1:7-23 DOI: 10.12710/cardiometry.2012.1.723
- Rudenko M.Y., Zernov V.A., Voronova O.K. Study of Hemodynamic Parameters Using Phase Analysis of the Cardiac Cycle. Biomedical Engineering. July 2009;43(4):151-5 DOI: 10.1007/s10527-009-9121-9
- Rudenko M.Y., Voronova O.K., Zernov V.A. ECG periodic table: a new ECG classification based on heart cycle phase analysis. Cardiometry. May 2013;2:19-28 DOI: 10.12710/cardiometry.2013.2.1928