New results on complete elliptic equations with Robin boundary coefficient-operator conditions in non commutative case
Автор: Cheggag M., Favini A., Labbas R., Maingot S., Ould Melha Kh.
Рубрика: Математическое моделирование
Статья в выпуске: 1 т.10, 2017 года.
Бесплатный доступ
In this paper, we prove some new results on operational second order differential equations of elliptic type with general Robin boundary conditions in a non-commutative framework. The study is performed when the second member belongs to a Sobolev space. Existence, uniqueness and optimal regularity of the classical solution are proved using interpolation theory and results on the class of operators with bounded imaginary powers. We also give an example to which our theory applies. This paper improves naturally the ones studied in the commutative case by M. Cheggag, A. Favini, R. Labbas, S. Maingot and A. Medeghri: in fact, introducing some operational commutator, we generalize the representation formula of the solution given in the commutative case and prove that this representation has the desired regularity.
Second-order elliptic differential equations, robin boundary conditions in non commutative cases, analytic semigroup, maximal regularity
Короткий адрес: https://sciup.org/147159416
IDR: 147159416 | DOI: 10.14529/mmp170105
Список литературы New results on complete elliptic equations with Robin boundary coefficient-operator conditions in non commutative case
- Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Elliptic Problems with Robin Boundary Coefficient-Operator Conditions in General Lp Sobolev Spaces and Applications. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 3, pp. 56-77 DOI: 10.14529/mmp150304
- Favini A., Labbas R., Maingot S., Meisner M. Study of Complete Abstract Elliptic Differential Equations in Non Commutative Cases. Applicable Analysis, 2012, vol. 91, issue 8, pp. 1495-1510 DOI: 10.10801.00036811.2011.635652
- Favini A., Labbas R., Maingot S., Meisner M. Boundary Value Problem For Elliptic Differential Equations in Non-Commutative Cases. Discrete and Continuous Dynamics System. Series A, 2013, vol. 33, issue 11-12, pp. 4967-4990 DOI: 10.3934/dcds.2013.33.4967
- Prüss J., Sohr H. On Operators with Bounded Imaginary Powers in Banach Spaces. Mathematische Zeitschrift, 1990, vol. 203, issue 3, pp. 429-452.
- Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Complete Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions, in UMD Spaces. Discrete and Continuous Dynamics System. Series S, 2011, vol. 4, no. 3, pp. 523-538 DOI: 10.3934/dcdss.2011.4.523
- Grisvard P. Spazi di tracce ed applicazioni. Rendiconti di matematica. Serie VI, 1972, vol. 5, pp. 657-729. (in Italian)
- Meisner M. Etude unifiée d'équations aux dérivées partielles de type elliptique régies par des équations différentielles à coefficients opérateurs dans un cadre non commutatif: applications concrètes dans les espaces de Hölder et les espaces Lp. Thèse de doctorat de l'Université du Havre, 2012.
- Dore G., Venni A. On the Closedness of the Sum of Two Closed Operators. Mathematische Zeitschrift, 1987, vol. 196, issue 2, pp. 189-201 DOI: 10.1007/BF01163654
- Favini A., Labbas R., Maingot S., Tanabe H., Yagi A. A Simplified Approach in the Study of Elliptic Differential Equation in UMD Space and New Applications. Funkcialaj Ekvacioj, 2008, vol. 51, no. 2, pp. 165-187.
- Favini A., Labbas R., Maingot S., Tanabe H., Yagi A. Complete Abstract Differential Equation of Elliptic Type in UMD Spaces. Funkcialaj Ekvacioj, 2006, vol. 49, no. 2, pp. 193-214.
- Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel, Birkhäuser, 1995.
- Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, N.Y., Oxford, North-Holland, 1978.
- Dore G. Lp Regularity for Abstract Differential Equation. Functional Analysis and Related Topics. Kyoto 1991. Lecture Notes in Mathematics. Vol. 1540. 1993, Berlin, Springer-Verlag, pp. 25-38 DOI: 10.1007/BFb0085472