Низковольтные миниатюризованные электронно-оптические системы. Обзор

Автор: С.О. Вересов, О.М. Горбенко, А.О. Голубок

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборы и системы

Статья в выпуске: 4, 2025 года.

Бесплатный доступ

Низковольтные миниатюризованные электронно-оптические системы, которые также называют микроколоннами, представляют собой самостоятельное направление в области электронной оптики и являются основой низковольтных миниатюрных электронных микроскопов, многоколоночных литографов и систем электронной голографии. В обзоре собраны работы по микроколоннам с различными электронно-оптическими схемами, включая моделирование распределения электрического поля, электронных траекторий, аберраций и пространственного разрешения, а также описание используемых электронных источников и технологий изготовления микроколонн.

Низковольтная электронная микроскопия, миниатюрные электронно-оптические системы, микроколонны, электростатические микролинзы, точечные источники электронов, пространственное разрешение, аберрации электронно-оптических систем, групповые технологии микроэлектроники, кремниевые технологии

Еще

Короткий адрес: https://sciup.org/142246255

IDR: 142246255   |   УДК: 537.533.3

Список литературы Низковольтные миниатюризованные электронно-оптические системы. Обзор

  • 1. Knoll M., Ruska E. Das elektronenmikroskop // Zeitschriftfür Physik. 1932. Vol. 78. P. 318–339. DOI: 10.1007/BF01342199
  • 2. Joy D.C., Joy C.S. Low voltage scanning electron microscopy // Micron. 1996. Vol. 27, no. 3-4. P. 247–263. DOI:
  • 10.1016/0968-4328(96)00023-6
  • 3. Frank L., Hovorka M., Konvalina I., Mikmekova S., Müllerova I. Very low energy scanning electron microscopy // Nuclear Instruments and Methods in Physics Reаsearch, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011. Vol. 645, no. 1. P. 46–54. DOI: 10.1016/j.nima.2010.12.214
  • 4. Muray L.P. Developments in low-voltage microscopy instrumentation // Scanning. 2011. Vol. 33. P. 155–161. DOI: 10.1002/sca.20245
  • 5. Fink H.W. Point source for ions and electrons // Physica Scripta. 1988. Vol. 38, no. 2. P. 260–263. DOI: 10.1088/0031-8949/38/2/029
  • 6. Crewe D.A., Perng D.C., Shoaf S.E., Feinerman A.D. Micromachined electrostatic electron source // Journal of Vacuum Science & Technology B. 1992. Vol. 10. P. 2754–2758. DOI: 10.1116/1.585996
  • 7. Kratschmer E., Kim H.S., Thomson M.G.R., Lee K.Y., Rishton S.A., Yu M.L., Chang T.H.P. Sub-40 nm resolution 1 keV scanning tunneling microscope fieldemission microcolumn // Journal of Vacuum Science & Technology B. 1994. Vol. 12. P. 3503–3507. DOI: 10.1116/1.587459
  • 8. Chang T.H.P., Thomson M.G.R., Yu M.L., Kratschmer E., Kim H.S., Lee K.Y., Rishton S.A., Zolgharnain S. Electron beam technology – SEM to microcolumn // Microelectronic Engineering. 1996. Vol. 32. P. 113–130. DOI: 10.1016/0167-9317(95)00366-5
  • 9. Park J.-Y., Choi H.-J., Lee Y., Kang S., Chun K., Park S., Kuk Y. Construction of STM Aligned Electron Field Emission Source // Journal de Physique IV France. 1996. Vol. 06, nо. C5. P. C5-285–C5-289. DOI: 10.1051/jp4:1996546
  • 10. Park J.-Y., Lera J.-D., Yakshin M.A., Choi S.S., Lee Y., Chun K.J., Lee J.D., Jeon D., Kuk Y. Fabrication of multiple microcolumn array combined with field emission array // Journal of Vacuum Science & Technology B. 1997. Vol. 15. P. 2749–2753. DOI: 10.1116/1.589720
  • 11. Park J.-Y., Lera J.-D., Choi H.-J., Buh G.H., Kang C.J., Jung J.H., Choi S.S., Jeon D., Kuk Y. Characterization of two by two electron-beam microcolumn array aligned with field emission array // Journal of Vacuum Science & Technology B. 1998. Vol. 16, P. 826–828. DOI:
  • 10.1116/1.589915
  • 12. Roberts R.H., Gomati M.M., Kudjoe J., Barkshire I.R., Bean S.J., Prutton M.A. Miniature, all-electrostatic, field emission electron column for surface analytical microscopy // Measurement Science and Technology. 1997. Vol. 8, no. 5. Id. 536. DOI: 10.1088/0957-0233/8/5/012
  • 13. Zlatkin A., Garcia N. Low-energy (300 eV) versatile scanning electron microscope with 30 nm resolution // Microelectronic Engineering. 1999. Vol. 45, no. 1. P. 39–46. DOI: 10.1016/S0167-9317(98)00260-3
  • 14. Zlatkin A., Garcia N. Functional scanning electron microscope of low energy with integrated electron optical system for nanolithography // Microelectronic Engineering. 1999. Vol. 46. P. 213–217. DOI: 10.1016/S0167-9317(99)00065-9
  • 15. Ruska E. The development of the electron microscope and of electron microscopy (Nobel Lecture) // Angewandte Chemie International Edition in English. 1987. Vol. 26, iss. 7. P. 595–705. DOI: 10.1002/anie.198705953
  • 16. Kratschmer E., Kim H.S., Thomson M.G.R., Lee K.Y., Rishton S.A., Yu M.L., Chang T.H.P. An electron‐beam microcolumn with improved resolution, beam current, and stability // Journal of Vacuum Science & Technology B. 1995. Vol. 13. P. 2498–2503. DOI: 10.1116/1.588381
  • 17. Bubeck C.-D., Fleischmann A., Knell G., Lutsch R.Y., Plies E., Winkler D. Miniature electrostatic lens for generation of a low-voltage high current electron probe // Nuclear Instruments and Methods in Physics Research A. 1999. Vol. 427, no. 1-2. P. 104–108. DOI: 10.1016/S0168-9002(98)01552-6
  • 18. Kim Y.C., Ahn S.J., Oh T.S., Kim D.W., Kim H.S., Jang W.K. Low energy microcolumn for large field view inspection // Ultramicroscopy. 2011. Vol. 111, no. 12. P. 1645–1649. DOI: 10.1016/j.ultramic.2011.09.016
  • 19. Shi Y., Ardanuc S., Lal A. Micro-Einzel lens for waferintegrated electron beam actuation // IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). 2013. P. 189–192. DOI: 10.1109/MEMSYS.2013.6474209
  • 20. van Veen A.H.V., Hagen C.W, Barth J.E., Kruit P. Reduced brightness of the ZrO/W Schottky electron emitter // J. Vac. Sci. Technol. B. 2001. Vol. 19, no. 6. P. 2038–2044. DOI: 10.1116/1.1409390
  • 21. Schwind G., Magera G., Swanson L. Comparison of parameters for Schottky and cold field emission sources // J. Vac. Sci. Technol. B. 2006. Vol. 24, no. 6. P. 2897–2901. DOI: 10.1116/1.2366675
  • 22. Bronsgeest M.S., Barth J.E., Swanson L.W., Kruit P. Probe current, probe size, and the practical brightness for probe forming systems // Journal of Vacuum Science & Technology B. 2008. Vol. 26, no. 3. P. 949–955. DOI: 10.1116/1.2907780
  • 23. Barth J.E., Kruit P. Addition of different contributions to the charged particle probe size // Optik. 1996. Vol. 101, no 3. P. 101–109.
  • 24. Crewe A.V. Optimization of small electron probes // Ultramicroscopy. 1987. Vol. 23, no. 2. P. 159–167. DOI: 10.1016/0304-3991(87)90161-6
  • 25. Feinerman A.D., Crewe D.A. Three-dimensional fabrication of miniature electron optics // Advances in Imaging and Electron Physics. 2002. Vol. 121. P. 91–142. DOI: 10.1016/S1076-5670(02)80026-X
  • 26. Loyd J.S. Miniature electron microscope beam column optics. Dissertations, LOUIS (University of Alabama in Huntsville), 2015. 177 p. URL: https://louis.uah.edu/uahdissertations/85
  • 27. Sise O., Ulu M., Dogan M. Characterization and modeling of multi-element electrostatic lens systems // Radiation Physics and Chemistry. 2007. Vol. 76, no. 3. P. 593–598. DOI: 10.1016/j.radphyschem.2005.11.037
  • 28. Comsol Documentation https://blogs.ethz.ch/ps_comsol/files/2020/05/COMSOL MultiphysicsUsersGuide.pdf
  • 29. Hawkes P., Kasper E. Principles of Electron Optics. Elsevier Ltd., vol. 2, 2018. 1455 p.
  • 30. Хокс П. Электронная микроскопия / Перевод с англ. под ред. И.Г. Стояновой. Москва: Мир, 1974. 319 с.
  • 31. Ruan Z., Zhang M., Zeng R.G., Ming Y., Da B., Mao S.F., Ding Z.J. Simulation study of the atomic resolution secondary electron imaging // Surface and Interface Analysis. 2014. Vol. 46, no. 12-13. P. 1296–1300. DOI: 10.1002/sia.5565
  • 32. Steinwand E., Longchamp J.-N., Fink H.-W. Fabrication and characterization of low aberration micrometer-sized electron lenses // Ultramicroscopy. 2010. Vol. 110, no. 9. P. 1148–1153. DOI: 10.1016/j.ultramic.2010.04.013
  • 33. Oh T.-S., Kim D.-W., Ahn S., Kim H.S. Improvement of the Probe Current in a Microcolumn by Introducing a Subsidiary Electrode in a Source Lens // Journal of the Korean Physical Society. 2013. Vol. 63, no. 6. P. 1128–1133. DOI: 10.3938/jkps.63.1128
  • 34. Fowler R.H., Nordheim L. Electron Emission in Intense Electric Fields // Proceedings of the Royal Society A. Vol. 119, no. 781. P. 173–181. DOI: 10.1098/rspa.1928.0091
  • 35. Kim H.S., Kim D.W., Ahn S.J., Kim Y.C., Park S.S. The Assembly of a Fully Functional Microcolumn and Its STEM-Mode Operation // Journal of the Korean Physical Society. 2003. Vol. 43, no. 5. P. 831–835. URL: https://www.jkps.or.kr › journal › download_pdf
  • 36. Minh P.N., Ono T., Sato N., Mimura H., Esashi M. Microelectron field emitter array with focus lenses for multielectron beam lithography based on silicon on insulator wafer // J. Vac. Sci. Technol. B. 2004. Vol. 22, no. 3. P. 1273–1276. DOI: 10.1116/1.1738118
  • 37. Gaskin J., Abbott T., Medley S., Patty K., Gregory D., Thaisen K., Ramsey B., Jerman G., Sampson A., Harvey R., Taylor L. Miniaturized Scanning Electron Microscope for In‐Situ Planetary Studies // Proc. "Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments". 2010. ASCE. DOI: 10.1061/41096(366)113
  • 38. Tuggle D.W., Li J.Z., Swanson L.W. Point cathodes for use in virtual source electron optics // Journal of Microscopy. 1985. Vol. 140, no. 3. P. 293–301. DOI: 10.1111/j.1365-2818.1985.tb02683.x
  • 39. Sise O., Ulu M., Dogan M. Exploring focal and aberration properties of electrostatic lenses through computer simulation // Eur. J. Phys. 2008. Vol. 29, no. 6. P. 1165–1176. DOI: 10.1088/0143-0807/29/6/005
  • 40. Wen Y., Du Z., Pan L. Design of electrostatic microcolumn for nanoscale photoemission source in massively parallel electron-beam lithography // J. Micro/Nanolith. MEMS MOEMS. 2015. Vol. 14, no. 4. Id. 043508. 7 pages. DOI: 10.1117/1.JMM.14.4.043508
  • 41. Cerezo A., Miller M.K. Einzel lenses in atom probe designs // Surface Science. 1991. Vol. 246. P. 450–456. DOI: 10.1016/0039-6028(91)90450-7
  • 42. Sise O., Ulu M., Dogan M. Multi-element cylindrical electrostatic lens systems for focusing and controlling charged particles // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005. Vol. 554, no. 1-3. P. 114–131. DOI: 10.1016/j.nima.2005.08.068
  • 43. Eastham D.A., Edmondson P., Greene S., Donnelly S., Olsson E., Svensson K., Bleloch A. A design for a subminiature, low energy scanning electron microscope with atomic resolution // Journal of Applied Physics. 2009. Vol. 105, no. 1. Id. 014702. DOI: 10.1063/1.3058602
  • 44. Krysztof M., Grzebyk T., Górecka-Drzazga A., Adamski K. Dziuban J. Electron optics column for a new MEMS-type transmission electron microscope // Bulletin of the Polish Academy of Sciences, Technical Sciences. 2018. Vol. 66. P. 133–137. DOI: 10.24425/119067
  • 45. Krysztof M. Design of an Einzel Lens with Square CrossSection // Electronics. 2021. Vol. 10, no. 19. Id. 2338. DOI: 10.3390/electronics10192338
  • 46. Baranova L.A., Yavor S.Ya., Read F.H. Crossed aperture lenses for the correction of chromatic and aperture aberrations // Rev. Sci. Instrum. 1996. Vol. 67, no. 3. P. 756–760. DOI: 10.1063/1.1146805
  • 47. Krysztof M., Białas M., Szyszka P., Grzebyk T., GóreckaDrzazga A. Fabrication and characterization of a miniaturized octupole deflection system for the MEMS electron microscope // Ultramicroscopy. 2021. Vol. 225. Id. 113288. DOI: 10.1016/j.ultramic.2021.113288
  • 48. Балашов В.Н., Данильчев С.С. Перспективы создания миниатюрных электронно-оптических систем // Известия РАН. Сер. физич. 2003. T. 67, № 4. C. 566–567. URL: https://elibrary.ru/item.asp?id=17287629
  • 49. Балашов В.Н., Данильчев С.С. Перспективы создания адаптивных электронно-оптических систем // Известия РАН. Сер. физич. 2003. T. 67, № 4. 2003, C. 563–565. URL: https://elibrary.ru/item.asp?id=17287628
  • 50. Данильчев С.С., Балашов В.Н. Миниатюрная электронно-оптическая система. Патент РФ по заявке № 2004120393/22 (023284) от 14.07.2004 г. URL: https://rusneb.ru/catalog/000224_000128_0000045202_20050427_U1_RU/
  • 51. van Bruggen M.J., van Someren B., Kruit P. Electron optics of skewed micro-Einzel lenses // Journal of Vacuum Science & Technology B. 2009. Vol. 27. P. 139–147. DOI: 10.1116/1.3071850
  • 52. Oh T.-S., Kim H.-S., Ahn S., Kim D.W. Design of an ultraminiaturized electron optical microcolumn with sub-5 nm very high resolution // Ultramicroscopy. 2014. Vol. 136. P. 171–175. DOI: 10.1016/j.ultramic.2013.10.003
  • 53. Kim H.W., Lee Y.B., Kim D.-W., Ahn S., Oh T.-S., Kim H.S., Kim Y.C. Variations of the field of view depending on the Si deflector shape in a microcolumn // J. Vac. Sci. Technol. B. 2018. Vol. 36, no. 6. Id. 06J902. DOI: 10.1116/1.5048128
  • 54. Williams D.B., Carter C.B. Transmission Electron Microscopy A. Textbook for Materials Science. Springer, 2009. 779 p. URL: https://link.springer.com/book/10.1007/978-0-387-76501-3
  • 55. van Aken R.H., Hagen V., Barth J.E., Kruit P. Low-energy foil aberration corrector // Ultramicroscopy. 2002. Vol. 93, no. 3-4. P. 321–330. DOI: 10.1016/S0304-3991(02)00287-5
  • 56. Kazmiruk V.V., Savitskaja T.N. New Principles of Designing Multibeam Electron-Optical Microsystems for Diagnostics of Semiconductor Structures // Bulletin of the Russian Academy of Sciences: Physics. 2009. Vol. 73, no. 4. P. 461–464. DOI: 10.3103/S1062873809040042
  • 57. van Aken R.H., Maas D.J., Hagen C.W., Barth J.E., Kruit P. Design of an aberration corrected low-voltage SEM // Ultramicroscopy. 2010. Vol. 110, no. 11. P. 1411–1419. DOI: 10.1016/j.ultramic.2010.07.012
  • 58. Gaskin J., Jerman G., Medley S., Gregory D., Abbott T., Sampson A. Simulation and characterization of a miniaturized Scanning Electron Microscope // IEEE Aerospace Conference Proceedings. 2011. P. 1–10. DOI: 10.1109/AERO.2011.5747297
  • 59. Crewe A.V., Eggenberger D.N., Wall J., Welter L.M. Electron Gun Using a Field Emission Source // Rev. Sci. Instrum. 1968. Vol. 39, no. 4. P. 576–583. DOI: 10.1063/1.1683435
  • 60. Laszczyk K., Krysztof M. Electron beam source for the miniaturized electron microscope on-chip // Vacuum. 2021. Vol. 189. Id. 110236. DOI: 10.1016/j.vacuum.2021.110236
  • 61. Sharma A., Kanth S.K., Kim H.S., Kim D.-W., Ahn S.J., Oh T.-S., Kim Y.C. Comparison of Electron Emission Characteristics of W and CNT Field Emitter for Microcolumn // Asian Journal of Chemistry. 2017. Vol. 29, no. 8. P. 1690–1692. DOI: 10.14233/ajchem.2017.20543
  • 62. Shao X., Srinivasan A., Ang W.K., Khursheed A. A highbrightness large-diameter graphene coated point cathode
  • field emission electron source // Nature Communications.
  • 2018. Vol. 9. Id. 1288. DOI: 10.1038/s41467-018-03721-y
  • 63. van Aken R.H., Janssen M.A.P.M., Hagen C.W., Kruit V. A simple fabrication method for tunnel junction emitters // Solid-State Electronics. 2001. Vol. 45, no 6. P. 1033–1038. DOI: 10.1016/S0038-1101(01)00153-8
  • 64. Горбенко О.М., Сапожников И.Д., Вересов С.О., Фельштын М.Л., Голубок А.О. Исследование электронно-оптической системы с электростатической микролинзой и автоэмиссионным катодом на основе СТМ // ХХIX Симпозиум "Нанофизика и Наноэлектроника", Н-Новгород, 10-14 марта 2025 г. Тезисы докладов. C. 447–447. URL: https://nanosymp.ru/ru/proceedings
  • 65. Wicki F., Longchamp J.-N., Escher C., Fink H.-W. Design and implementation of a micron-sized electron column fabricated by focused ion beam milling // Ultramicroscopy. 2016. Vol. 160. P. 74–79. DOI: 10.1016/j.ultramic.2015.09.013
  • 66. Sinno I., Sanz-Velasco A., Kang S., Jansen H., Olsson E., Enoksson P., Svensson K. Fabrication of nanoscale electrostatic lenses // J. Micromech. Microeng. 2010. Vol. 20, no. 9. Id. 095031 (7 pages). DOI: 10.1088/0960-1317/20/9/095031
  • 67. Lutsch R.Y, Plies E. Initial resolution measurements of miniaturized electrostatic lenses for LVSEM // Ultramicroscopy. 2002. Vol. 93, no. 3-4. P. 339–345. DOI: 10.1016/S0304-3991(02)00289-9
  • 68. Muray L.P., Silver C.S., Spallas J.P. Sub- lithography with miniature electron beam columns // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2006. Vol. 24, no. 6. P. 2945–2950. DOI: 10.1116/1.2375088
  • 69. Spallas J.P., Silver C.S., Muray L.P., Wells T., ElGomati M. A manufacturable miniature electron beam column // Microelectronic Engineering. 2006. Vol. 83, no. 4-9. P. 984–989. DOI: 10.1016/j.mee.2006.01.245
  • 70. Kazmiruk V., Savitskaja T. Electron Optic Design of Arrayed E-Beam Microcolumns Based Systems for Wafer Defects Inspection // arXiv:0805.0495v1 [physics.optics]. 2008. 16 pages. DOI: 10.48550/arXiv.0805.0495
  • 71. Suwal O.K., Sharma A., Lee Y.B., Oh T.S., Kim D.W.,
  • Kim H.S. Influence of Einzel lens structure on the performance of a microcolumn fabricated through MEMS technology // Advanced Materials Research. 2013. Vol. 694-697. P. 1001–1007. DOI: 10.4028/www.scientific.net/AMR.694-697.1001
  • 72. Longchamp J.-N., Latychevskaia T., Escher C., Fink H.-W. Non-destructive imaging of an individual protein // Phys. Lett. 2012. Vol. 101, no. 9. Id. 093701. DOI: 10.1063/1.4748113
  • 73. Gaskin J., Jerman G., Gregory D., Sampson A. Miniature Variable Pressure Scanning Electron Microscope for in-situ imaging & chemical analysis // IEEE Aerospace Conference Proceedings. 2012. P. 1–10. DOI: 10.1109/AERO.2012.6187064
  • 74. Own C. et al. Mochii Portable Spectroscopic Electron Microscope on Iss: Progress Toward Flight // 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132), 2019. URL: https://www.hou.usra.edu/meetings/lpsc2019/pdf/3238.pdf
  • 75. Own C., Murfitt M.F. Mochii.United States Patent No. US 9.997.331. B1. 12.06.2018.
  • 76. Own C., Clemett S., Zia R., Martinez J., Own S., Morales Z., Koene R., Pettit D.R. Electron Microscopy and Analysis of Martian Meteorite ALH84001 with Mochii ISS-NL on the International Space Station // Microscopy and Microanalysis. 2022. Vol. 28, no. S1. P. 2712–2718.
  • DOI: 10.1017/S1431927622010224
  • 77. Golubok A.O., Timofeev V.A. STM combined with SEM without SEM capability limitations // Ultramicroscopy. 1992. Vol. 42-44, part 2. P. 1558-1563. DOI: 10.1016/0304-3991(92)90483-Z
  • 78. Sapozhnikov I.D., Gorbenko O.M., Felshtyn M.L., Zhukov M.V., Golubok A.O. Features of combining of scanning probe microscopy with optical and scanning electron microscopy // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 699. Id. 012040. (6 pages). DOI: 10.1088/1757-899X/699/1/012040
Еще