Non-uniqueness of certain Hahn - Banach extensions
Автор: Beckenstein Edward, Narici Lawrence
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.6, 2004 года.
Бесплатный доступ
Let f be a continuous linear functional defined on a subspace M of a normed space X. If X is real or complex, there are results that characterize uniqueness of continuous extensions F of f to X for every subspace M and those that apply just to M. If X is defined over a non-Archimedean valued field K and the norm also satisfies the strong triangle inequality, the Hahn--Banach theorem holds for all subspaces M of X if and only if K is spherically complete and it is well-known that Hahn--Banach extensions are never unique in this context. We give a different proof of non-uniqueness here that is interesting for its own sake and may point a direction in which further investigation would be fruitful.
Короткий адрес: https://sciup.org/14318101
IDR: 14318101
Список литературы Non-uniqueness of certain Hahn - Banach extensions
- Herrero P. El teorema de Hahn-Banach: historia, versiones analiticas, geometria y aplicaciones. La propiedad de extension, Universidad de Murcia.-Spain: Murcia, 2003.
- Monna A. F. Remarks on some problems in linear topological spaces over fields with non-Archimedean valuation//Indag. Math.-1968.-V. 30.-P. 484-496.
- Narici L., Beckenstein E. Topological vector spaces.-New York: Dekker, 1985.
- Narici L., Beckenstein E. and Bachman G. Functional analysis and valuation theory.-New York: Dekker, 1971.
- van Rooij A. Non-Archimedean functional analysis.-New York: Dekker, 1978.