Non-Uniqueness of Solutions to Boundary Value Problems with Wentzell Condition

Бесплатный доступ

Recently, in the mathematical literature, theWentzell boundary condition is considered from two points of view. In the first case, let us call it classical one, this condition is an equation containing a linear combination of the values of the function and its derivatives on the boundary of the domain. Moreover, the function itself also satisfies the equation with an elliptic operator defined in the domain. In the second case, which we call neoclassical one, the Wentzell condition is an equation with the Laplace–Beltrami operator defined on the boundary of the domain understood as a smooth compact Riemannian manifold without boundary, and the external action is represented by the normal derivative of a function defined in the domain. The paper shows the non-uniqueness of solutions to boundary value problems with the Wentzell condition in the neoclassical sense both for the equation with the Laplacian and for the equation with the Bi-Laplacian given in the domain.

Еще

Wentzell condition.

Короткий адрес: https://sciup.org/147234990

IDR: 147234990   |   DOI: 10.14529/mmp210408

Список литературы Non-Uniqueness of Solutions to Boundary Value Problems with Wentzell Condition

  • Вентцель, А.Д. О граничных условиях для многомерных диффузионных процессов / А.Д. Вентцель // Теория вероятней и ее применения. - 1959. - Т. 4, № 2. - С. 172-185.
  • Luo, Y. Linear Second Order Elliptic Equations with Venttsel Boundary Conditions / Y. Luo, N.S. Trudinger // Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. - 1991. - V. 118, № 3-4. - P. 193-207.
  • Апушинская, Д.Е. Начально-краевая задача с граничным условием Вентцеля для недивергентных параболических уравнений / Д.Е. Апушинская, А.И. Назаров // Алгебра и анализ. - 1994. - Т. 6, № 6. - С. 1-29.
  • Лукьянов, В.В. Решение задачи Вентцеля для уравнения Лапласа и Гельмгольца с помощью повторных потенциалов / В.В. Лукьянов, А.И. Назаров // Записки научных семинаров Cанкт-Петербургского отделения математического института им. В.А. Стеклова РАН. - 1998. - № 250. - С. 203-218.
  • Favini, A. C_0-Semigroups Generated by Second Order Differential Operators with General Wentzell Boundary Conditions / A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli // Proceedings of the American Mathematical Society. - 2000. - V. 128, № 7. - P. 1981-1989.
  • Favini, A. The Heat Equation with Generalized Wentzell Boundary Condition / A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli // Journal of Evolution Equations. - 2002. - V. 2, № 1. - P. 1-19.
  • Goldstein, G.R. Derivation and Physimathcal Interpretation of General Boundary Conditions / G.R. Goldstein // Advances in Differential Equations. - 2006. - V. 4, № 11. - P. 419-456.
  • Denk, R. The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains / R. Denk, M. Kunze, D. Ploss // Integral Equations and Operator Theory. - 2021. - V. 93, № 2. - P. 13.
  • Triebel, H. Interpolation Theory. Function Spaces. Differential operators / H. Triebel. - Veb Deutscher Verlag der Wissenschaften : Berlin, 1978.
  • Warner, F.W. Foundations of Differentiable Manifold and Lie Groups / F.W. Warner. - New York, Berlin, Heidelberg, Tokyo: Springer, 1983.
  • Гончаров, Н.С. Задачи Шоуолтера - Сидорова и Коши для линейного уравнения Дзекцера с краевыми условиями Вентцеля и Робена в ограниченной области / Н. С. Гончаров, С. А. Загребина, Г. А. Свиридюк // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. - 2022. (в печати)
Еще
Статья научная