Non-vanishing cosmological constant effect in super-Poincare-invariant universe
Автор: Aminova A.V., Lyulinsky M. Kh.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Рубрика: Гравитация, космология и фундаментальные поля
Статья в выпуске: 3 (28), 2019 года.
Бесплатный доступ
In [1] we defined the Minkowski superspace 𝑆𝑀(4, 4|𝜆, 𝜇) as the invariant of the Poincare supergroup of supertransformations, which is a solution of Killing superequations. In the present paper we use formulae of super-Riemannian geometry developed by V. P. Akulov and D. V. Volkov [2] for calculating a superconnection and a supercurvature of Minkowski superspace.We show that the curvature of the Minkowski superspace does not vanish, and the Minkowski supermetric is the solution of the Einstein superequations, so the eight-dimensional curved super-Poincare invariant superuniverse 𝑆𝑀(4, 4|𝜆, 𝜇) is supported by purely fermionic stress-energy supertensor with two free real parameters 𝜆, 𝜇, and, moreover, it has non-vanishing cosmological constant Λ = 12/(𝜆2-𝜇2) defined by these parameters that could mean a new look at the cosmological constant problem
Короткий адрес: https://sciup.org/142224147
IDR: 142224147 | DOI: 10.17238/issn2226-8812.2019.3.11-19
Список литературы Non-vanishing cosmological constant effect in super-Poincare-invariant universe
- Aminova A. V., Mochalov S. V. Russsian mathematics (Iz. VUZ). 1994, vol. 38, no. 3, pp. 10-16.
- Akulov V. P., Volkov D. V. On Riemannian superspaces of minimal dimension. Teoretich. i matematich. fizika, 1979, vol. 41, no. 2, pp. 147-151.
- Berezin F.A. Introduction to Algebra and Analysis with Anticommutate Variables, Moscow Univ., Moscow, 1983.
- Akulov V.P., Volkov D.V., Soroka D. A. O kalibrovochnykx polyakh na superprostranstvakh s razlichnymi gruppami golonomii. JETP Letters, 1975, vol. 22, no. 7, pp. 396-399.
- Akulov V.P., Volkov D.V., Soroka D. A. Teoretich. i matematich. fizika, 1977, vol. 31, no. 1, pp. 12.
- Green M., Schwarz J., Witten E. Theory of Superstrings, vol. I and II. Moscow: Mir Publ., 1990.
- Capozziello S., Cirilo-Lombardo D.J., Dorokhov A.E. Int. J. Theor. Phys., 2014, vol. 53, no. 11, pp. 3882- 3892.
- Capozziello S., Cirilo-Lombardo D.J., De Laurentis M. Int. J. Geom. Meth. Mod. Phys., 2014, vol. 11, no. 10, 1450081.
- Gliner E.B. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Soviet Physics JETP, 1966, vol. 22, no. 2, pp. 378-382.
- Gliner E.B. Inflationary universe and the vacuumlike state of physical medium. Physics-Uspekhi, 2002, vol. 45, no. 2, pp. 213-220.
- Sazhin M.V. Anisotropy and polarization of cosmic microwave background: state of the art. Physics-Uspekhi, 2004, vol. 47, no. 2, pp. 187-194.
- Brandyshev P.E., Frolov B.N. Cosmological inflation in supersymmetric conformal theory. Space, time and fundamental interactions, 2018, no. 3, pp. 4-18.
- Kugo T., Uehara S. Improved superconformal gauge conditions in the N=1 supergravity Yang-Mills matter system. Nucl. Phys., 1983, vol. 222, pp. 125-138.
- Kugo T., Uehara S. Conformal and Poincare tensor calculi in N=1 supergravity. Nucl. Phys., 1983, vol. 226, pp. 49-92.
- Fradkin E.S., Tseytlin A.A. Conformal supergravity. Phys.Rept., 1985, vol. 119, pp. 233-362.
- Weinberg S. The quantum theory of fields. Cambridge University Press, 1995. 609 p.
- Vladimirov Ju.S. The nature of space and time. Anthology of ideas. Moscow: LELAND Publ., 2015. 400 p.